Stress strain behavior of hybrid steel-PVA fiber reinforced cementitious composites under uniaxial compression

2018 ◽  
Vol 188 ◽  
pp. 349-360 ◽  
Author(s):  
Linzhu Sun ◽  
Qiang Hao ◽  
Junliang Zhao ◽  
Dongyan Wu ◽  
Fang Yang
2014 ◽  
Vol 893 ◽  
pp. 201-204
Author(s):  
Xiu Ling Li ◽  
Juan Wang

Green high performance fiber reinforced cementitious composites (GHPFRCC) is the optimized mix proportion of engineered cementitious composites (ECC) with high volume of fly ash and polyvinyl alcohol (PVA) fiber. To study the compressive performance, the prism stress-strain relationship of GHPFRCC is the focus in this study. There are sixteen groups of GHPFRCC specimens with the size 40mm×40mm×160mm. The compressive stress-strain curves were obtained based on the uniaxial compression tests. Experimental results show that the uniaxial compression stress-strain curve belongs to the skewed unimodal curve. The peak strain can steadily reach more than 0.005, and it has put up a great plastic deformation capacity and post-peak ductility. It has still reserved some residual strength even when the strain is up to a bigger value. The research achievements can promote the application of GHPFRCC in the practical engineering.


2012 ◽  
Vol 598 ◽  
pp. 618-621 ◽  
Author(s):  
Wen Bo Bao ◽  
Cheng Hong Wang ◽  
Shao Feng Zhang ◽  
Zhi Qiang Huang

A type of ecological engineered cementitious composites, which use iron ore tailings to replace fine grinding quartz sand in PVA fiber reinforced cementitious composites, was developed. The flexural strength and toughness of this material were studied by four-point flexural test with samples of beam and sheet. The results show that the fiber reinforced tailings cementitious composites exhibit the characteristics of multiple cracking, high ductility and flexural toughness. The studies indicate that the mix proportion and the fiber length have a significant influence on the properties of this material, particularly for tensile toughness.


Materials ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 521 ◽  
Author(s):  
Ting-Yu Liu ◽  
Peng Zhang ◽  
Juan Wang ◽  
Yi-Feng Ling

In this study, a method to optimize the mixing proportion of polyvinyl alcohol (PVA) fiber-reinforced cementitious composites and improve its compressive strength based on the Levenberg-Marquardt backpropagation (BP) neural network algorithm and genetic algorithm is proposed by adopting a three-layer neural network (TLNN) as a model and the genetic algorithm as an optimization tool. A TLNN was established to implement the complicated nonlinear relationship between the input (factors affecting the compressive strength of cementitious composite) and output (compressive strength). An orthogonal experiment was conducted to optimize the parameters of the BP neural network. Subsequently, the optimal BP neural network model was obtained. The genetic algorithm was used to obtain the optimum mix proportion of the cementitious composite. The optimization results were predicted by the trained neural network and verified. Mathematical calculations indicated that the BP neural network can precisely and practically demonstrate the nonlinear relationship between the cementitious composite and its mixture proportion and predict the compressive strength. The optimal mixing proportion of the PVA fiber-reinforced cementitious composites containing nano-SiO2 was obtained. The results indicate that the method used in this study can effectively predict and optimize the compressive strength of PVA fiber-reinforced cementitious composites containing nano-SiO2.


2016 ◽  
Vol 10 (1) ◽  
pp. 482-491 ◽  
Author(s):  
Huixian Yang ◽  
Jing Li ◽  
Yansheng Huang

The Quasi-static mechanical properties of hybrid fiber (steel fiber and Polyvinyl alcohol (PVA) fiber) reinforced cementitious composites (HFRCC(SP)) were investigated by compressive and tensile experiments. The compressive strength, peak strain, elastic modulus and tensile strength are studied as compared with that of engineered cementitious composite (ECC). Study results indicate that steel fibers can improve the compressive and tensile strength of HFRCC(SP) but the peak strain of HFRCC(SP) decreases. The formulas modified based on codes are proposed to calculate compressive peak strain, elastic modulus and tensile strength. The relationship between tensile strain at peak load and tensile strength of HFRCC with different volume fractions of polyethylene fiber and steel fiber were studied and the tensile stress-strain relation was presented. The parameters k1 and k2 of constitutive formulas for fiber reinforced high strength concrete presented by Mansur are modified to describe the stress-strain curve of HFRCC(SP), the modified formulas show good agreement with the experimental results.


Sign in / Sign up

Export Citation Format

Share Document