Characterization and correlation analysis of mechanical properties and electrical resistance of asphalt emulsion cold-mix asphalt

2020 ◽  
Vol 263 ◽  
pp. 119974
Author(s):  
Rui Li ◽  
Zhen Leng ◽  
Yongli Wang ◽  
Fuliao Zou
Materials ◽  
2019 ◽  
Vol 12 (9) ◽  
pp. 1469 ◽  
Author(s):  
Orathai Tangsirinaruenart ◽  
George Stylios

This research presents an investigation of novel textile-based strain sensors and evaluates their performance. The electrical resistance and mechanical properties of seven different textile sensors were measured. The sensors are made up of a conductive thread, composed of silver plated nylon 117/17 2-ply, 33 tex and 234/34 4-ply, 92 tex and formed in different stitch structures (304, 406, 506, 605), and sewn directly onto a knit fabric substrate (4.44 tex/2 ply, with 2.22, 4.44 and 7.78 tex spandex and 7.78 tex/2 ply, with 2.22 and 4.44 tex spandex). Analysis of the effects of elongation with respect to resistance indicated the ideal configuration for electrical properties, especially electrical sensitivity and repeatability. The optimum linear working range of the sensor with minimal hysteresis was found, and the sensor’s gauge factor indicated that the sensitivity of the sensor varied significantly with repeating cycles. The electrical resistance of the various stitch structures changed significantly, while the amount of drift remained negligible. Stitch 304 2-ply was found to be the most suitable for strain movement. This sensor has a wide working range, well past 50%, and linearity (R2 is 0.984), low hysteresis (6.25% ΔR), good gauge factor (1.61), and baseline resistance (125 Ω), as well as good repeatability (drift in R2 is −0.0073). The stitch-based sensor developed in this research is expected to find applications in garments as wearables for physiological wellbeing monitoring such as body movement, heart monitoring, and limb articulation measurement.


2021 ◽  
Vol 33 (9) ◽  
pp. 04021220
Author(s):  
Teerasak Yaowarat ◽  
Wittakran Sudsaynate ◽  
Suksun Horpibulsuk ◽  
Avirut Chinkulkijniwat ◽  
Arul Arulrajah ◽  
...  

2011 ◽  
Vol 13 ◽  
pp. 27-32 ◽  
Author(s):  
Zdenĕk Jonšta ◽  
Pavel Koštial ◽  
Ivan Ružiak ◽  
Peter Jonšta ◽  
J. Jurčiová ◽  
...  

In the paper we present measurements of transport physical parameters such as thermal conductivity, diffusivity and specific heat capacity and dc electrical conductivity as well as the mechanical values E*, tg δ for rubber compounds filled by different ratio of silica - carbon black fillers. From presented results it is possible to see that proper filler concentration (rubber blend - silica - carbon black) rising all thermal parameters as well as mechanical properties represented by complex Young’s modulus and so, maintains the good mechanical parameters of the blend and finally it also lowers the electrical resistance. All trends are favourable for the improvement of useful rubber blends properties.


Sign in / Sign up

Export Citation Format

Share Document