Modeling the fire response of reactive powder concrete beams with due consideration to explosive spalling

2021 ◽  
Vol 301 ◽  
pp. 124094
Author(s):  
Pengfei Ren ◽  
Xiaomeng Hou ◽  
V.K.R. Kodur ◽  
Chao Ge ◽  
Yading Zhao ◽  
...  
2020 ◽  
Vol 62 (9) ◽  
pp. 951-956
Author(s):  
Luo Xuguo ◽  
Tan Zheng Long ◽  
Y. Frank Chen

2012 ◽  
Vol 174-177 ◽  
pp. 1090-1095 ◽  
Author(s):  
Kai Pei Tian ◽  
Yang Ju ◽  
Hong Bin Liu ◽  
Jin Hui Liu ◽  
Li Wang ◽  
...  

The explosive spalling of high-strength concrete due to fire is a problem that has garnered increasingly widespread attention, particularly the explosive spalling of reactive powder concrete (RPC). For years, based on the vapor pressure mechanism, the addition of fibers has been demonstrated to be somewhat effective in protecting against spalling. However, relevant experiments indicate that fibers are not effective for dense concrete, which is a challenge for the simple vapor pressure mechanism in providing spalling resistance for RPC. The authors found that silica fume plays an important role in the explosive spalling of RPC. Thus, four classes of RPCs with different ratios of silica fume were prepared, and the spalling phenomena and the inner temperature distribution during heating were investigated. The results show that silica fume content has a prominent effect on the spalling process of RPC.


2006 ◽  
Vol 4 (1) ◽  
pp. 85-97 ◽  
Author(s):  
Kazunori Fujikake ◽  
Takanori Senga ◽  
Nobuhito Ueda ◽  
Tomonori Ohno ◽  
Makoto Katagiri

2020 ◽  
Vol 24 (4) ◽  
pp. 04020018
Author(s):  
Zhi Fang ◽  
Rui Hu ◽  
Ruinian Jiang ◽  
Yu Xiang ◽  
Chuanle Liu

2018 ◽  
Vol 7 (4.19) ◽  
pp. 843
Author(s):  
Rasha Yassien Dakhil ◽  
Mustafa B. Dawood

A study for the continuous composite steel-reactive powder concrete beams under repeated loads were executed experimentally and analytically. In the experimental part, six continuous composite sections were constructed as test beams. "The‘“decks slab concretes"was connected tos steel I-beams by headed steel studs welded to the top flanges“ofs“thes‘‘steel I-beams.“T,he dimensions“ of “the“ deck slab is (2200×250×80mm), while the type of I-beam is (IPE 140) with length of (2200mm). For the present work, the experimental work includes also examining the shear in the links by creating two models (push out) and tested to determine the properties and behavior of the studs. The behavior of the studs were conducted by"getting load-slip curves. In the part of the,oretical,‘‘.tested beams.was numericallysmodeled then analyzed using thesfinite element method.‘“Thes“numerical models were carried out in three dimensionss bys“the software package (ANSYS 16.1). Verifi,cationsof thesnumericalsresults“was donesbyscompari,ngs thems with the experimentals results. “Thesresultssof thesfiniteselementsanalysissshowed good agreements‘with the results ofsthe experimental tests. The maximumsandsminimum difference‘‘in ultimate loa,ds for beams‘‘ were (5.85% and 1.33%) respectively.  The results show that stiffenerssof beamssandsstrengthening with CFRP shall increase the ultimate load capacity‘and affects on‘‘mode of failure“ of theses beams.‘  


Materials ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 4173 ◽  
Author(s):  
Zbigniew Perkowski ◽  
Mariusz Czabak ◽  
Stefania Grzeszczyk ◽  
Daniel Frączek ◽  
Karolina Tatara ◽  
...  

The article describes four-point bending tests of three reinforced concrete beams with identical cross-sections, spans, and high-ductility steel reinforcement systems. Two beams were strengthened in the compressed section with a thin layer of reactive powder concrete (RPC) bonded with evenly spaced stirrups. Their remaining sections, and the third reference beam, were made of ordinary concrete. Measurements of their deflections, strains and axis curvature; ultrasonic tests; and a photogrammetric analysis of the beams are the main results of the study. For one of the beams with the RPC, the load was increased in one stage. For the two remaining beams, the load was applied in four stages, increasing the maximum load from stage to stage in order to allow the analysis of the damage evolution before reaching the bending resistance. The most important effect observed was the stable behaviour of the strengthened beams in the post-critical state, as opposed to the reference beam, which had about two to three times less energy-absorbing capacity in this range. Moreover, thanks to the use of the RPC layer, the process of concrete cover delamination in the compression zone was significantly reduced, the high ductility of the rebars was fully utilized during the formation of plastic hinges, and the bending capacity was increased by approximately 12%.


Sign in / Sign up

Export Citation Format

Share Document