Potentiality of earth-based mortar containing bamboo particles for GHG emissions reduction

2022 ◽  
Vol 317 ◽  
pp. 125971
Author(s):  
Rayane de Lima Moura Paiva ◽  
Lucas Rosse Caldas ◽  
Adriana Paiva de Souza Martins ◽  
Romildo Dias Toledo Filho
2011 ◽  
Vol 102 (16) ◽  
pp. 7457-7465 ◽  
Author(s):  
Andrea Zamboni ◽  
Richard J. Murphy ◽  
Jeremy Woods ◽  
Fabrizio Bezzo ◽  
Nilay Shah

2013 ◽  
Vol 291-294 ◽  
pp. 3004-3013
Author(s):  
Ding Ma ◽  
Li Ning Wang ◽  
Wen Ying Chen

At a time of increased international concern and negotiation for GHG emissions reduction, country studies on the underlying effects of GHG growth gain importance. China experienced continuous, rapid economic growth over the past. At the same time, energy consumption and CO2 emissions increased rapidly while the energy intensity and carbon intensity showed a downward trend at country level. What factors were driving this change? What measures can be adopted to ensure the continual decrease of energy intensity and carbon intensity? The refined IDA method is employed in this paper to identify the impact of each factor. A year-by-year decomposition is carried out at sector level, and various interesting results on the underlying effects are found. The results yield important hints for the planning of energy and climate policy.


2020 ◽  
Vol 24 (3) ◽  
pp. 80-93
Author(s):  
Aleksey Safronov ◽  
Julia Guzeyeva ◽  
Jevgeniy Begens ◽  
Ansis Mezulis

AbstractThe article describes the technology of the “hydraulic piston”, as well as the studies that confirm the viability of this technology, implemented in various devices, designed to compress natural gas (CNG) and biomethane (bio-CNG), to accumulate CNG and bio-CNG, to deliver bio-CNG from the production site to the point of its injection into the natural gas network or to the vehicle fuelling stations to fill the Natural Gas Vehicles (NGV). The article presents prototypes of personal fuelling devices and mobile fuelling systems developed by Hygen Ltd. (Hygen), thereby showing the potential of the technology to contribute in the deployment of alternative fuel infrastructure and into the global GHG emissions reduction, mainly in the transport sector.


Author(s):  
Lina Ma ◽  
Xinran Zhang ◽  
Yushen Du

The purpose of this paper is to investigate environmental performance of a supply chain which consists of an upstream supplier and a downstream firm. A mathematical model considering both downstream firm’s monitoring and governmental intervention is developed. Afterwards, a numerical example is presented to show the equilibriums of these models and the optimal choices of firms and government. The results show that when customers’ environmental awareness increases, both total environmental impact and social welfare decrease. The downstream firm’s monitoring will certainly reduce the total environmental impact. In most cases, it does not matter whether the downstream firm chooses to monitor the supplier or not, the total environmental impact and social welfare would not be affected when the government chooses subsidy. If a subsidy is present, firms and environment will be better than those without subsidy. Hence, the government is more likely to choose to provide subsidy and the downstream firm will not monitor the supplier’s greenhouse gas (GHG) emissions reduction effort. In a few cases when environmental impact is too large, taxation may be the optimal choice for the government and the downstream firm will choose to monitor the supplier’s GHG emissions reduction investment.


2016 ◽  
Vol 38 (3) ◽  
pp. 219 ◽  
Author(s):  
Sandra J. Eady ◽  
Guillaume Havard ◽  
Steven G. Bray ◽  
William Holmes ◽  
Javi Navarro

This paper explores the effect of using regional data for livestock attributes on estimation of greenhouse gas (GHG) emissions for the northern beef industry in Australia, compared with using state/territory-wide values, as currently used in Australia’s national GHG inventory report. Regional GHG emissions associated with beef production are reported for 21 defined agricultural statistical regions within state/territory jurisdictions. A management scenario for reduced emissions that could qualify as an Emissions Reduction Fund (ERF) project was used to illustrate the effect of regional level model parameters on estimated abatement levels. Using regional parameters, instead of state level parameters, for liveweight (LW), LW gain and proportion of cows lactating and an expanded number of livestock classes, gives a 5.2% reduction in estimated emissions (range +12% to –34% across regions). Estimated GHG emissions intensity (emissions per kilogram of LW sold) varied across the regions by up to 2.5-fold, ranging from 10.5 kg CO2-e kg–1 LW sold for Darling Downs, Queensland, through to 25.8 kg CO2-e kg–1 LW sold for the Pindan and North Kimberley, Western Australia. This range was driven by differences in production efficiency, reproduction rate, growth rate and survival. This suggests that some regions in northern Australia are likely to have substantial opportunities for GHG abatement and higher livestock income. However, this must be coupled with the availability of management activities that can be implemented to improve production efficiency; wet season phosphorus (P) supplementation being one such practice. An ERF case study comparison showed that P supplementation of a typical-sized herd produced an estimated reduction of 622 t CO2-e year–1, or 7%, compared with a non-P supplemented herd. However, the different model parameters used by the National Inventory Report and ERF project means that there was an anomaly between the herd emissions for project cattle excised from the national accounts (13 479 t CO2-e year–1) and the baseline herd emissions estimated for the ERF project (8 896 t CO2-e year–1) before P supplementation was implemented. Regionalising livestock model parameters in both ERF projects and the national accounts offers the attraction of being able to more easily and accurately reflect emissions savings from this type of emissions reduction project in Australia’s national GHG accounts.


2019 ◽  
Vol 8 (1) ◽  
pp. 167-192 ◽  
Author(s):  
Benoit Mayer

AbstractOn 9 October 2018, the Court of Appeal of The Hague (the Netherlands) upheld the District Court’s decision in the case of Urgenda, thus confirming the obligation of the Netherlands to reduce its greenhouse gas (GHG) emissions by at least 25% by 2020 compared with levels in 1990. This case raised some of the thorniest issues in climate law. As the Netherlands is responsible for only a tiny fraction of global GHG emissions, is it right for a court to hold that a national emissions reduction mitigation target is necessary to prevent dangerous climate change and its impact on human rights? If so, how can this target be determined? The District Court and the Court of Appeal of The Hague have provided inspiring responses, although they are perhaps not entirely convincing.


Sign in / Sign up

Export Citation Format

Share Document