Subjective awareness scale length influences the prevalence, not the presence, of graded conscious states

2016 ◽  
Vol 45 ◽  
pp. 47-59 ◽  
Author(s):  
Henk Pretorius ◽  
Colin Tredoux ◽  
Susan Malcolm-Smith
2021 ◽  
Vol 87 (2) ◽  
Author(s):  
Timo P. Kiviniemi ◽  
Eero Hirvijoki ◽  
Antti J. Virtanen

Ideally, binary-collision algorithms conserve kinetic momentum and energy. In practice, the finite size of collision cells and the finite difference in the particle locations affect the conservation properties. In the present work, we investigate numerically how the accuracy of these algorithms is affected when the size of collision cells is large compared with gradient scale length of the background plasma, a parameter essential in full- $f$ fusion plasma simulations. Additionally, we discuss implications for the conserved quantities in drift-kinetic formulations when fluctuating magnetic and electric fields are present: we suggest how the accuracy of the algorithms could potentially be improved with minor modifications.


Author(s):  
Aline Iamin Gomide ◽  
Rita de Cássia dos Santos Navarro Silva ◽  
Moysés Nascimento ◽  
Luis Antônio Minim ◽  
Valéria Paula Rodrigues Minim

2009 ◽  
Vol 24 (3) ◽  
pp. 749-759 ◽  
Author(s):  
D. Chicot ◽  
F. Roudet ◽  
V. Lepingle ◽  
G. Louis

The hardness of a material is generally affected by the indentation size effect. The strain gradient plasticity (SGP) theory is largely used to study this load dependence because it links the hardness to the intrinsic properties of the material. However, the characteristic scale-length is linked to the macrohardness, impeding any sound discussion. To find a relevant parameter, we suggest introducing a hardness length-scale factor that only depends on the shear modulus and the Burgers vector of the material and is easily calculable from the relation of the SGP theory. The variation of the hardness length-scale factor is thereafter used to discuss the hardness behavior of a magnetite crystal, the objective being to study the effect of the cumulative plasticity resulting from cyclic indentation. As a main result, the hardness length-scale factor is found to be constant by applying repeated cycles at a constant peak load whereas the macrohardness and the characteristic scale-length are both cycle dependent. When using incremental loads, the hardness length-scale factor monotonically decreases between two limits corresponding to those obtained at high and low loading rates, while the dwell-load duration increases. The physical meaning of such behavior is based on the modification of the dislocation network during the indentation process depending on the deformation rate.


2018 ◽  
Vol 614 ◽  
pp. A63 ◽  
Author(s):  
K. Sysoliatina ◽  
A. Just ◽  
O. Golubov ◽  
Q. A. Parker ◽  
E. K. Grebel ◽  
...  

Aims. We construct the rotation curve of the Milky Way in the extended solar neighbourhood using a sample of Sloan Extension for Galactic Understanding and Exploration (SEGUE) G-dwarfs. We investigate the rotation curve shape for the presence of any peculiarities just outside the solar radius as has been reported by some authors. Methods. Using the modified Strömberg relation and the most recent data from the RAdial Velocity Experiment (RAVE), we determine the solar peculiar velocity and the radial scale lengths for the three populations of different metallicities representing the Galactic thin disc. Subsequently, with the same binning in metallicity for the SEGUE G-dwarfs, we construct the rotation curve for a range of Galactocentric distances from 7 to 10 kpc. We approach this problem in a framework of classical Jeans analysis and derive the circular velocity by correcting the mean tangential velocity for the asymmetric drift in each distance bin. With SEGUE data we also calculate the radial scale length of the thick disc taking as known the derived peculiar motion of the Sun and the slope of the rotation curve. Results. The tangential component of the solar peculiar velocity is found to be V ⊙ = 4.47 ± 0.8 km s−1 and the corresponding scale lengths from the RAVE data are Rd(0 < [Fe/H] < 0.2) = 2.07 ± 0.2 kpc, Rd(−0.2 < [Fe/H] < 0) = 2.28 ± 0.26 kpc and Rd(−0.5 < [Fe/H] <−0.2) = 3.05 ± 0.43 kpc. In terms of the asymmetric drift, the thin disc SEGUE stars are demonstrated to have dynamics similar to the thin disc RAVE stars, therefore the scale lengths calculated from the SEGUE sample have close values: Rd(0 < [Fe/H] < 0.2) = 1.91 ± 0.23 kpc, Rd(−0.2 < [Fe/H] < 0) = 2.51 ± 0.25 kpc and Rd(−0.5 < [Fe/H] <−0.2) = 3.55 ± 0.42 kpc. The rotation curve constructed through SEGUE G-dwarfs appears to be smooth in the selected radial range 7 kpc < R < 10 kpc. The inferred power law index of the rotation curve is 0.033 ± 0.034, which corresponds to a local slope of dV c∕dR = 0.98 ± 1 km s−1 kpc−1. The radial scale length of the thick disc is 2.05 kpc with no essential dependence on metallicity. Conclusions. The local kinematics of the thin disc rotation as determined in the framework of our new careful analysis does not favour the presence of a massive overdensity ring just outside the solar radius. We also find values for solar peculiar motion, radial scale lengths of thick disc, and three thin disc populations of different metallicities as a side result of this work.


Author(s):  
shuyu Zheng ◽  
Debing Zhang ◽  
Erbing Xue ◽  
Limin Yu ◽  
Xianmei Zhang ◽  
...  

Abstract High poloidal beta scenarios with favorable energy confinement (β_p~1.9, H_98y2~1.4) have been achieved on Experimental Advanced Superconducting Tokamak (EAST) using only radio frequency waves heating. Gyrokinetic simulations are carried out with experimental plasma parameters and tokamak equilibrium data of a typical high β_p discharge by the GTC code. Linear simulations show that electron temperature scale length and electron density scale length destabilize the turbulence, collision effects stabilize the turbulence, and the instability propagates in the electron diamagnetic direction. These indicate that the dominant instability in the core of high β_p plasma is collisionless trapped electron mode. Ion thermal diffusivities calculated by nonlinear gyrokinetic simulations are consistent with the experimental value, in which the electron collision effects play an important role. Further analyses show that instabilities with k_θ ρ_s>0.38 are suppressed by collision effects and collision effects reduce the radial correlation length of turbulence, resulting in the suppression of the turbulence.


Author(s):  
Nicola Gilli ◽  
Jeremy Watts ◽  
William G. Fahrenholtz ◽  
Diletta Sciti ◽  
Laura Silvestroni

2016 ◽  
Vol 87 (11) ◽  
pp. 11E101 ◽  
Author(s):  
S. Houshmandyar ◽  
Z. J. Yang ◽  
P. E. Phillips ◽  
W. L. Rowan ◽  
A. E. Hubbard ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document