scholarly journals Probing function in 3D neuronal cultures: A survey of 3D multielectrode array advances

2021 ◽  
Vol 60 ◽  
pp. 255-260
Author(s):  
Doris Lam ◽  
Nicholas O. Fischer ◽  
Heather A. Enright
2020 ◽  
Author(s):  
Chumin Sun ◽  
K.C. Lin ◽  
Yu-Ting Huang ◽  
Emily S.C. Ching ◽  
Pik-Yin Lai ◽  
...  

AbstractStudying connectivity of neuronal cultures can provide insights for understanding brain networks but it is challenging to reveal neuronal connectivity from measurements. We apply a novel method that uses a theoretical relation between the time-lagged cross-covariance and the equal-time cross-covariance to reveal directed effective connectivity and synaptic weights of cortical neuron cultures at different days in vitro from multielectrode array recordings. Using a stochastic leaky-integrate-and-fire model, we show that the simulated spiking activity of the reconstructed networks can well capture the measured network bursts. The neuronal networks are found to be highly nonrandom with an over-representation of bidirectionally connections as compared to a random network of the same connection probability, with the fraction of inhibitory nodes comparable to the measured fractions of inhibitory neurons in various cortical regions in monkey, and have small-world topology with basic network measures comparable to those of the nematode C. elegans chemical synaptic network. Our analyses further reveal that (i) the excitatory and inhibitory incoming degrees have bimodal distributions the excitatory and inhibitory incoming degrees have bimodal distributions, which are that distributions that have been indicated to be optimal against both random failures and attacks in undirected networks; (ii) the distribution of the physical length of excitatory incoming links has two peaks indicating that excitatory signal is transmitted at two spatial scales, one localized to nearest nodes and the other spatially extended to nodes millimeters away, and the shortest links are mostly excitatory towards excitatory nodes and have larger synaptic weights on average; (iii) the average incoming and outgoing synaptic strength is non-Gaussian with long tails and, in particular, the distribution of outgoing synaptic strength of excitatory nodes with excitatory incoming synaptic strength is lognormal, similar to the measured excitatory postsynaptic potential in rat cortex.Author summaryTo understand how the brain processes signal and carries out its function, it is useful to know the connectivity of the underlying neuronal circuits. For large-scale neuronal networks, it is difficult to measure connectivity directly using electron microscopy techniques and methods that can estimate connectivity from electrophysiological recordings are thus highly desirable. Existing methods focus mainly on estimating functional connectivity, which is defined by statistical dependencies between neuronal activities but the relevant direct casual interactions are captured by effective connectivity. Here we apply a novel covariance-relation based method to estimate the directed effective connectivity and synaptic weights of cortical neuron cultures from recordings of multielectrode array of over 4000 electrodes taken at different days in vitro. The neuronal networks are found to be nonrandom, small-world, excitation/inhibition balanced as measured in monkey cortex, and with feeder hubs. Our analyses further suggest some form of specialisation of nodes in receiving excitatory and inhibitory signals and the transmission of excitatory signals at two spatial scales, one localized to nearest nodes and the other spatially extended to nodes millimeters away, and reveal that the distributions of the average incoming and outgoing synaptic strength are skewed with long tails.


The Analyst ◽  
2016 ◽  
Vol 141 (18) ◽  
pp. 5346-5357 ◽  
Author(s):  
H. A. Enright ◽  
S. H. Felix ◽  
N. O. Fischer ◽  
E. V. Mukerjee ◽  
D. Soscia ◽  
...  

Electrophysiology measurements from human primary neurons after repeated chemical exposures are enabled with an integrated microfluidic and microelectrode array device.


Author(s):  
Tessa de Korte ◽  
Stéphanie Guilbot ◽  
Richard Printemps ◽  
Ludovic Hautefeuille ◽  
Marie Le Grand ◽  
...  

2011 ◽  
Vol 109 (1) ◽  
pp. 166-175 ◽  
Author(s):  
Emilia Biffi ◽  
Andrea Menegon ◽  
Francesco Piraino ◽  
Alessandra Pedrocchi ◽  
Gianfranco B. Fiore ◽  
...  

2020 ◽  
Vol 22 (1) ◽  
pp. 111
Author(s):  
Oksana M. Subach ◽  
Natalia V. Barykina ◽  
Elizaveta S. Chefanova ◽  
Anna V. Vlaskina ◽  
Vladimir P. Sotskov ◽  
...  

Red fluorescent genetically encoded calcium indicators (GECIs) have expanded the available pallet of colors used for the visualization of neuronal calcium activity in vivo. However, their calcium-binding domain is restricted by calmodulin from metazoans. In this study, we developed red GECI, called FRCaMP, using calmodulin (CaM) from Schizosaccharomyces pombe fungus as a calcium binding domain. Compared to the R-GECO1 indicator in vitro, the purified protein FRCaMP had similar spectral characteristics, brightness, and pH stability but a 1.3-fold lower ΔF/F calcium response and 2.6-fold tighter calcium affinity with Kd of 441 nM and 2.4–6.6-fold lower photostability. In the cytosol of cultured HeLa cells, FRCaMP visualized calcium transients with a ΔF/F dynamic range of 5.6, which was similar to that of R-GECO1. FRCaMP robustly visualized the spontaneous activity of neuronal cultures and had a similar ΔF/F dynamic range of 1.7 but 2.1-fold faster decay kinetics vs. NCaMP7. On electrically stimulated cultured neurons, FRCaMP demonstrated 1.8-fold faster decay kinetics and 1.7-fold lower ΔF/F values per one action potential of 0.23 compared to the NCaMP7 indicator. The fungus-originating CaM of the FRCaMP indicator version with a deleted M13-like peptide did not interact with the cytosolic environment of the HeLa cells in contrast to the metazoa-originating CaM of the similarly truncated version of the GCaMP6s indicator with a deleted M13-like peptide. Finally, we generated a split version of the FRCaMP indicator, which allowed the simultaneous detection of calcium transients and the heterodimerization of bJun/bFos interacting proteins in the nuclei of HeLa cells with a ΔF/F dynamic range of 9.4 and a contrast of 2.3–3.5, respectively.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Meng Zhuang ◽  
Suchitra Joshi ◽  
Huayu Sun ◽  
Tamal Batabyal ◽  
Cassandra L. Fraser ◽  
...  

AbstractCritical for metabolism, oxygen plays an essential role in maintaining the structure and function of neurons. Oxygen sensing is important in common neurological disorders such as strokes, seizures, or neonatal hypoxic–ischemic injuries, which result from an imbalance between metabolic demand and oxygen supply. Phosphorescence quenching by oxygen provides a non-invasive optical method to measure oxygen levels within cells and tissues. Difluoroboron β-diketonates are a family of luminophores with high quantum yields and tunable fluorescence and phosphorescence when embedded in certain rigid matrices such as poly (lactic acid) (PLA). Boron nanoparticles (BNPs) can be fabricated from dye-PLA materials for oxygen mapping in a variety of biological milieu. These dual-emissive nanoparticles have oxygen-insensitive fluorescence, oxygen-sensitive phosphorescence, and rigid matrix all in one, enabling real-time ratiometric oxygen sensing at micron-level spatial and millisecond-level temporal resolution. In this study, BNPs are applied in mouse brain slices to investigate oxygen distributions and neuronal activity. The optical properties and physical stability of BNPs in a biologically relevant buffer were stable. Primary neuronal cultures were labeled by BNPs and the mitochondria membrane probe MitoTracker Red FM. BNPs were taken up by neuronal cell bodies, at dendrites, and at synapses, and the localization of BNPs was consistent with that of MitoTracker Red FM. The brain slices were stained with the BNPs, and the BNPs did not significantly affect the electrophysiological properties of neurons. Oxygen maps were generated in living brain slices where oxygen is found to be mostly consumed by mitochondria near synapses. Finally, the BNPs exhibited excellent response when the conditions varied from normoxic to hypoxic and when the neuronal activity was increased by increasing K+ concentration. This work demonstrates the capability of BNPs as a non-invasive tool in oxygen sensing and could provide fundamental insight into neuronal mechanisms and excitability research.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Federico Tinarelli ◽  
Elena Ivanova ◽  
Ilaria Colombi ◽  
Erica Barini ◽  
Edoardo Balzani ◽  
...  

Abstract Background DNA methylation has emerged as an important epigenetic regulator of brain processes, including circadian rhythms. However, how DNA methylation intervenes between environmental signals, such as light entrainment, and the transcriptional and translational molecular mechanisms of the cellular clock is currently unknown. Here, we studied the after-hours mice, which have a point mutation in the Fbxl3 gene and a lengthened circadian period. Methods In this study, we used a combination of in vivo, ex vivo and in vitro approaches. We measured retinal responses in Afh animals and we have run reduced representation bisulphite sequencing (RRBS), pyrosequencing and gene expression analysis in a variety of brain tissues ex vivo. In vitro, we used primary neuronal cultures combined to micro electrode array (MEA) technology and gene expression. Results We observed functional impairments in mutant neuronal networks, and a reduction in the retinal responses to light-dependent stimuli. We detected abnormalities in the expression of photoreceptive melanopsin (OPN4). Furthermore, we identified alterations in the DNA methylation pathways throughout the retinohypothalamic tract terminals and links between the transcription factor Rev-Erbα and Fbxl3. Conclusions The results of this study, primarily represent a contribution towards an understanding of electrophysiological and molecular phenotypic responses to external stimuli in the Afh model. Moreover, as DNA methylation has recently emerged as a new regulator of neuronal networks with important consequences for circadian behaviour, we discuss the impact of the Afh mutation on the epigenetic landscape of circadian biology.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Chialin Cheng ◽  
Surya A. Reis ◽  
Emily T. Adams ◽  
Daniel M. Fass ◽  
Steven P. Angus ◽  
...  

AbstractMutations in MAPT (microtubule-associated protein tau) cause frontotemporal dementia (FTD). MAPT mutations are associated with abnormal tau phosphorylation levels and accumulation of misfolded tau protein that can propagate between neurons ultimately leading to cell death (tauopathy). Recently, a p.A152T tau variant was identified as a risk factor for FTD, Alzheimer's disease, and synucleinopathies. Here we used induced pluripotent stem cells (iPSC) from a patient carrying this p.A152T variant to create a robust, functional cellular assay system for probing pathophysiological tau accumulation and phosphorylation. Using stably transduced iPSC-derived neural progenitor cells engineered to enable inducible expression of the pro-neural transcription factor Neurogenin 2 (Ngn2), we generated disease-relevant, cortical-like glutamatergic neurons in a scalable, high-throughput screening compatible format. Utilizing automated confocal microscopy, and an advanced image-processing pipeline optimized for analysis of morphologically complex human neuronal cultures, we report quantitative, subcellular localization-specific effects of multiple kinase inhibitors on tau, including ones under clinical investigation not previously reported to affect tau phosphorylation. These results demonstrate the potential for using patient iPSC-derived ex vivo models of tauopathy as genetically accurate, disease-relevant systems to probe tau biochemistry and support the discovery of novel therapeutics for tauopathies.


Sign in / Sign up

Export Citation Format

Share Document