scholarly journals High temperature air oxidation behavior of Hastelloy X processed by Electron Beam Melting (EBM) and Selective Laser Melting (SLM)

2020 ◽  
Vol 171 ◽  
pp. 108647 ◽  
Author(s):  
M. Romedenne ◽  
R. Pillai ◽  
M. Kirka ◽  
S. Dryepondt
Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3603
Author(s):  
Tim Pasang ◽  
Benny Tavlovich ◽  
Omry Yannay ◽  
Ben Jakson ◽  
Mike Fry ◽  
...  

An investigation of mechanical properties of Ti6Al4V produced by additive manufacturing (AM) in the as-printed condition have been conducted and compared with wrought alloys. The AM samples were built by Selective Laser Melting (SLM) and Electron Beam Melting (EBM) in 0°, 45° and 90°—relative to horizontal direction. Similarly, the wrought samples were also cut and tested in the same directions relative to the plate rolling direction. The microstructures of the samples were significantly different on all samples. α′ martensite was observed on the SLM, acicular α on EBM and combination of both on the wrought alloy. EBM samples had higher surface roughness (Ra) compared with both SLM and wrought alloy. SLM samples were comparatively harder than wrought alloy and EBM. Tensile strength of the wrought alloy was higher in all directions except for 45°, where SLM samples showed higher strength than both EBM and wrought alloy on that direction. The ductility of the wrought alloy was consistently higher than both SLM and EBM indicated by clear necking feature on the wrought alloy samples. Dimples were observed on all fracture surfaces.


Metals ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 668 ◽  
Author(s):  
Mihaela Raluca Condruz ◽  
Gheorghe Matache ◽  
Alexandru Paraschiv ◽  
Teodor Badea ◽  
Viorel Badilita

The high-temperature oxidation behavior of selective laser melting (SLM) manufactured IN 625 was studied over 96 h of exposure at 900 °C and 1050 °C in air. An extensive analysis was performed to characterize the oxide scale formed and its evolution during the 96 h, including mass gain analysis, EDS, XRD, and morphological analysis of the oxide scale. The mass gain rate of the bare material increases rapidly during the first 8 h of temperature holding and diminishes at higher holding periods for both oxidation temperatures. High-temperature exposure for short periods (24 h) follows a parabolic law and promotes the precipitation of δ phase, Ni-rich intermetallics, and carbides. Within the first 24 h of exposure at 900 °C, a Cr2O3 and a (Ni, Fe)Cr2O4 spinel scale were formed, while at a higher temperature, a more complex oxide was registered, consisting of (Ni, Fe)Cr2O4, Cr2O3, and rutile-type oxides. Prolonged exposure of IN 625 at 900 °C induces the preservation of the Cr2O3 scale and the dissolution of carbides. Other phases and intermetallics, such as γ, δ phases, and MoNi4 are still present. The exposure for 96 h at 1050 °C led to the dissolution of all intermetallics, while the same complex oxide scale was formed.


NANO ◽  
2021 ◽  
Author(s):  
Qingxia Zhang ◽  
Lingtao Meng ◽  
Xiaotian Yin ◽  
Shenghai Wang ◽  
Yong Liu ◽  
...  

In previous studies, the microstructure, mechanical properties and corrosion resistance of Hastelloy X fabricated by selective laser melting (SLM) have been investigated; however, it is hoped that heat treatment will effect on its properties. Therefore, this study is to discuss heat treatment effect on Hastelloy X fabricated by SLM. It is interestingly found that fracture strain greatly increases with heat treatment, and the yield ratio decreases, which demonstrates the material is more reliable. High temperature tensile behavior is discussed; it is worth mentioning that not only fracture strain of the HT sample increases greatly at 550∘C in comparison with SLM sample, but also ultimate tensile strength increases from 632 MPa to 639 MPa; the results show that the mechanical property can be improved at medium and high temperature by heat treatment. The corrosion resistance of HT sample deteriorates slightly, which can be explained by Cr-rich precipitates. In conclusion, the material after heat treatment is suitable for applications requiring high mechanical reliability and medium and high temperature occasions, but it is not befitting for corrosive environments.


Metals ◽  
2017 ◽  
Vol 7 (3) ◽  
pp. 91 ◽  
Author(s):  
Volker Weißmann ◽  
Philipp Drescher ◽  
Rainer Bader ◽  
Hermann Seitz ◽  
Harald Hansmann ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document