Corrosion behavior of biodegradable metals in two different simulated physiological solutions: Comparison of Mg, Zn and Fe

2021 ◽  
Vol 182 ◽  
pp. 109278
Author(s):  
Hongzhou Dong ◽  
Fei Lin ◽  
Aldo R. Boccaccini ◽  
Sannakaisa Virtanen
2020 ◽  
Vol 1 (2) ◽  
pp. 219-248
Author(s):  
Moataz Abdalla ◽  
Alexander Joplin ◽  
Mohammad Elahinia ◽  
Hamdy Ibrahim

Biodegradable metals have been under significant research as promising alternatives to the currently in-use nonbiodegradable materials in the field of supportive medical implants. In this scope, magnesium and its alloys were widely investigated due to their superior biocompatibility over other metals. Most of the research effort in the literature has been focused on assuring the biocompatibility, improving mechanical properties, and tailoring the corrosion rate of magnesium-based implants. Furthermore, considerable research was done to develop numerical models towards an inexpensive and fast designing tools capable of simulating the degradation/corrosion behavior of magnesium-based implants. Due to the complexity of the degradation process and the various factors that can be involved, several hypotheses were introduced to provide a realistic simulation of the corrosion behavior in vitro and in vivo. A review of the current literature hypothesis and different modeling constitutive equations for modeling the corrosion of magnesium alloys along with a summary of the supplementary experimental methods is provided in this paper.


2015 ◽  
Vol 227 ◽  
pp. 431-434 ◽  
Author(s):  
Dalibor Vojtěch ◽  
Jiří Kubásek ◽  
Jaroslav Capek ◽  
Alena Michalcova ◽  
Iva Pospíšilová

Biodegradable alloys are currently studied as prospective biomaterials for temporary medical implants like stents and fixation devices for fractured bones. Among biodegradable metals, only magnesium, zinc and iron meet general requirements of biocompatibility and relative non-toxicity. In the present paper, Mg-, Zn- and Fe-based biodegradable alloys are compared. Advantages and disadvantages of the three kinds of alloying systems are demonstrated regarding the corrosion behavior, mechanical performance and biocompatibility. From the corrosion behavior point of view, Zn- and Fe-based alloys appear as promising alternatives to Mg-based alloys.


Author(s):  
Ann Chidester Van Orden ◽  
John L. Chidester ◽  
Anna C. Fraker ◽  
Pei Sung

The influence of small variations in the composition on the corrosion behavior of Co-Cr-Mo alloys has been studied using scanning electron microscopy (SEM), energy dispersive x-ray analysis (EDX), and electrochemical measurements. SEM and EDX data were correlated with data from in vitro corrosion measurements involving repassivation and also potentiostatic anodic polarization measurements. Specimens studied included the four alloys shown in Table 1. Corrosion tests were conducted in Hanks' physiological saline solution which has a pH of 7.4 and was held at a temperature of 37°C. Specimens were mechanically polished to a surface finish with 0.05 µm A1203, then exposed to the solution and anodically polarized at a rate of 0.006 v/min. All voltages were measured vs. the saturated calomel electrode (s.c.e.).. Specimens had breakdown potentials near 0.47V vs. s.c.e.


1980 ◽  
Vol 41 (C8) ◽  
pp. C8-862-C8-866
Author(s):  
M. Naka ◽  
K. Hashimoto ◽  
K. Asami ◽  
T. Masumoto

2013 ◽  
Vol 51 (1) ◽  
pp. 033-039
Author(s):  
Hae Woo Lee ◽  
Jae Hyeok Jeon ◽  
Ja Young Hong

2015 ◽  
Vol 30 (6) ◽  
pp. 627
Author(s):  
YE Zuo-Yan ◽  
LIU Dao-Xin ◽  
LI Chong-Yang ◽  
ZHANG Xiao-Hua ◽  
ZANG Xiao-Ming ◽  
...  

2008 ◽  
Author(s):  
Yutaka Yokoyama ◽  
Rieko Takahashi ◽  
Hidekazu Asano ◽  
Naoki Taniguchi ◽  
Morimasa Naito

2020 ◽  
Vol 61 (9) ◽  
pp. 1775-1781
Author(s):  
Li-Bin Niu ◽  
Shoichi Kosaka ◽  
Masaki Yoshida ◽  
Yusuke Suetake ◽  
Kazuo Marugame

Sign in / Sign up

Export Citation Format

Share Document