Corrosion and Mechanical Behavior of Biodegradable Metallic Biomaterials

2015 ◽  
Vol 227 ◽  
pp. 431-434 ◽  
Author(s):  
Dalibor Vojtěch ◽  
Jiří Kubásek ◽  
Jaroslav Capek ◽  
Alena Michalcova ◽  
Iva Pospíšilová

Biodegradable alloys are currently studied as prospective biomaterials for temporary medical implants like stents and fixation devices for fractured bones. Among biodegradable metals, only magnesium, zinc and iron meet general requirements of biocompatibility and relative non-toxicity. In the present paper, Mg-, Zn- and Fe-based biodegradable alloys are compared. Advantages and disadvantages of the three kinds of alloying systems are demonstrated regarding the corrosion behavior, mechanical performance and biocompatibility. From the corrosion behavior point of view, Zn- and Fe-based alloys appear as promising alternatives to Mg-based alloys.

2015 ◽  
Vol 647 ◽  
pp. 59-65
Author(s):  
Dalibor Vojtěch ◽  
Jiří Kubásek ◽  
Jaroslav Čapek ◽  
Iva Pospíšilová

Metallic biomaterials are currently used in medicine for fabrication of various kinds of implants like joint and bone replacements, dental implants, stents, fixation devices for fractured bones etc. Their advantages over polymeric or ceramic biomaterials are in higher strength, fracture toughness and fatigue life. In addition, metals can be simply processed by established technologies known for centuries. Due to the increasing average age of human population, there are growing requirements for mechanical and functional performance of implants. Therefore, extensive research and development activities are focused on new directions in this area including new surface treatments and alloys with improved biocompatibility and mechanical performance, porous biomaterials, biodegradable metallic materials. Biodegradable materials are explored as alternatives for fabrication of temporary medical implants like stents and fixation devices (screws, plates, nails) for fractured bones. The present paper focuses on new Mg-and Zn-biodegradable alloys. Advantages of these materials are characterized with respect to mechanical performance and corrosion behavior.


2017 ◽  
Vol 891 ◽  
pp. 395-399 ◽  
Author(s):  
Dalibor Vojtěch ◽  
Jiří Kubásek ◽  
Jaroslav Čapek ◽  
Iva Pospíšilová

Biodegradable Mg, Zn and Fe alloys are currently studied as prospective biomaterials for temporary medical implants like stents for repairing damaged blood vessels and devices (screws and plates) for fixing fractured bones. In the present paper, novel Mg-, Zn- and Fe-biodegradable alloys are proposed. Advantages and disadvantages of the three kinds of alloys are demonstrated regarding the mechanical performance, in vitro corrosion behavior and biocompatibility.


2020 ◽  
Vol 1 (2) ◽  
pp. 219-248
Author(s):  
Moataz Abdalla ◽  
Alexander Joplin ◽  
Mohammad Elahinia ◽  
Hamdy Ibrahim

Biodegradable metals have been under significant research as promising alternatives to the currently in-use nonbiodegradable materials in the field of supportive medical implants. In this scope, magnesium and its alloys were widely investigated due to their superior biocompatibility over other metals. Most of the research effort in the literature has been focused on assuring the biocompatibility, improving mechanical properties, and tailoring the corrosion rate of magnesium-based implants. Furthermore, considerable research was done to develop numerical models towards an inexpensive and fast designing tools capable of simulating the degradation/corrosion behavior of magnesium-based implants. Due to the complexity of the degradation process and the various factors that can be involved, several hypotheses were introduced to provide a realistic simulation of the corrosion behavior in vitro and in vivo. A review of the current literature hypothesis and different modeling constitutive equations for modeling the corrosion of magnesium alloys along with a summary of the supplementary experimental methods is provided in this paper.


Author(s):  
Simona BOICIUC ◽  
◽  
◽  

The undertaken research which is described in this paper aims at the corrosion behaviour of composite coatings in nickel matrix using as dispersed phase technical alumina with dimensions of 5 μm and their characterization from a microstructural point of view. The corrosion resistance in the saline fog of the coatings is influenced by the microstructure, the stresses developed in the layer and the roughness.


2020 ◽  
Author(s):  
Stéphane Goria ◽  
Louise Dupet ◽  
Maëva Négroni ◽  
Gabriel Sega ◽  
Philippe Arnoux ◽  
...  

BACKGROUND most serious games and other game-based tools are designed as digital games or escape games. They are designed for learning or sometimes in the field of medicine as an aid to care. However, they can also be seen as an aid to research, in our case, to evaluate the advantages and disadvantages of imaging techniques for cancer detection. OBJECTIVE we present a case study of action research on the design of a serious board game intended to consider the advantages and weaknesses of a diagnostic method in a different ways. The goal was to better understand the principles of designing a tool using game or play. METHODS we explicitly implemented another process than gamification to develop a structure reminiscent of the game to highlight the strengths and weaknesses of different imaging techniques from the point of view of the respondents (in this case specialists not directly involved in the project). Based on this feedback and the scientific literature on this subject, we detail the main categories of games and games developed for serious use in order to understand their differences. Concerning the cancer research part to which game contributes, our method is based on questions asked to experts and practitioners of this specialty. RESULTS an expert point of view translation tool in the form of a game has been realized to apprehend a research in a different way. CONCLUSIONS we show with the help of a diagram, some possible design paths leading to this type of design result including two hidden dimensions to consider (the awareness of the game or play by the "player" and his role as a contributor or recipient).


2021 ◽  
Vol 182 ◽  
pp. 109278
Author(s):  
Hongzhou Dong ◽  
Fei Lin ◽  
Aldo R. Boccaccini ◽  
Sannakaisa Virtanen

Author(s):  
Doriana Landi ◽  
Marta Ponzano ◽  
Carolina Gabri Nicoletti ◽  
Gaia Cola ◽  
Gianluca Cecchi ◽  
...  

AbstractRestrictions in the access to healthcare facilities during COVID-19 pandemic have raised the need for remote monitoring of chronic medical conditions, including multiple sclerosis (MS). In order to enable the continuity of care in these circumstances, many telemedicine applications are currently tested. While physicians’ preferences are commonly investigated, data regarding the patients’ point of view are still lacking. We built a 37 items web-based survey exploring patients’ propensity, awareness, and opinions on telemedicine with the aim to evaluate the sustainability of this approach in MS. Analysing 613 questionnaires out of 1093 that were sent to persons with MS followed at the Multiple Sclerosis Center of Tor Vergata University, Rome, we found that more than half of respondents (54%) were open to having a televisit. Propensity toward telemedicine significantly depended on having a higher income (p = 0.037), living farther from the center (p = 0.038), using computer and tablet (p = 0.010) and using the Internet for other remote activities (p < 0.001), conversely it was not influenced by any specific disease characteristics (i.e. degree of disability). The main advantages and disadvantages of televisit reported by participants were respectively saving time (70%) and impossibility to measure physical parameters (71%). Although the majority of respondents are in favour of televisit, so far this approach is restricted to those displaying better socioeconomic conditions and higher familiarity with technology. Implications of the study are that telemedicine platforms should be better tailored to patients’ demands in order to spread the use of telemedicine, to enhance usability and to increase patients’ adherence.


2001 ◽  
Vol 54 (1) ◽  
pp. 69-92 ◽  
Author(s):  
Igor V. Andrianov ◽  
Jan Awrejcewicz

In this review article, we present in some detail new trends in application of asymptotic techniques to mechanical problems. First we consider the various methods which allows for the possibility of extending the perturbation series application space and hence omiting their local character. While applying the asymptotic methods very often the following situation appears: an existence of the asymptotics ε → 0 implies an existence of the asymptotics ε → ∞ (or, in a more general sense, ε → a and ε → b). Therefore, an idea of constructing a single solution valid for a whole interval of parameter ε changes is very attractive. In other words, we discuss a problem of asymptotically equivalent function constructions possessing for ε → a and ε → b a known asymptotic behavior. The defined problems are very important from the point of view of both theoretical and applied sciences. In this work, we review the state-of-the-art, by presenting the existing methods and by pointing out their advantages and disadvantages, as well as the fields of their applications. In addition, some new methods are also proposed. The methods are demonstrated on a wide variety of static and dynamic solid mechanics problems and some others involving fluid mechanics. This review article contains 340 references.


2021 ◽  
Vol 5 (1) ◽  
pp. 32
Author(s):  
Roya Akrami ◽  
Shahwaiz Anjum ◽  
Sakineh Fotouhi ◽  
Joel Boaretto ◽  
Felipe Vannucchi de Camargo ◽  
...  

Joints and interfaces are one of the key aspects of the design and production of composite structures. This paper investigates the effect of adhesive–adherend interface morphology on the mechanical behavior of wavy-lap joints with the aim to improve the mechanical performance. Intentional deviation from a flat joint plane was introduced in different bond angles (0°, 60°, 90° and 120°) and the joints were subjected to a quasi-static tensile load. Comparisons were made regarding the mechanical behavior of the conventional flat joint and the wavy joints. The visible failure modes that occurred within each of the joint configurations was also highlighted and explained. Load vs. displacement graphs were produced and compared, as well as the failure modes discussed both visually and qualitatively. It was observed that distinct interface morphologies result in variation in the load–displacement curve and damage types. The wavy-lap joints experience a considerably higher displacement due to the additional bending in the joint area, and the initial damage starts occurring at a higher displacement. However, the load level had its maximum value for the single-lap joints. Our findings provide insight for the development of different interface morphology angle variation to optimize the joints behavior, which is widely observed in some biological systems to improve their performance.


Sign in / Sign up

Export Citation Format

Share Document