saturated calomel electrode
Recently Published Documents


TOTAL DOCUMENTS

125
(FIVE YEARS 33)

H-INDEX

12
(FIVE YEARS 4)

2021 ◽  
Author(s):  
Q X Liu ◽  
Q P Tian ◽  
X Y Ye ◽  
F R Liu ◽  
H M Yuan ◽  
...  

Palladium/nickel-foam (Pd/Ni) electrode is used as a typical efficient electrocatalytic electrode for the removal of 2,4-dichlorophenoxyacetic acid (2,4-D) in surface water and industrial wastewater. Many researches had reported how to enhance the dechlorination efficiency of the Pd/Ni electrode by using less Pd loading. However, there are few reports of choosing a suitable electrolyte solution to improve the efficiency of dechlorination. Efforts were made in this work of the different catholyte influenced the dechlorination efficiency. The results showed the fastest removal efficiency of 2,4-D in 34 mmol/L NaHCO3 than in 34 mmol/L NaCl, 34 mmol/L NaClO4, 17 mmol/L Na2SO4 catholyte, respectively on Pd/Ni electrode with pd loading of 0.202 mg/cm2 at constant potential of -0.55 V (vs saturated calomel electrode). The dechlorination current efficiency (CE) was 20.5% in the 34 mmol/L NaHCO3 catholyte more than three times that in 17 mmol/L Na2SO4 catholyte for that HCO3- was the most likely source of protons for adsorbed active hydrogen (H*) in Pd active centers.


2021 ◽  
Author(s):  
Antoine Bohn ◽  
Juan José Moreno ◽  
Pierre Thuéry ◽  
Marc Robert ◽  
Orestes Rivada Wheelaghan

A pyrazole–based ligand substituted with terpyridine groups at the 3 and 5positions has been synthesized to form the dinuclear cobalt complex 1, that electrocatalytically reduces carbon dioxide (CO2) to carbon monoxide (CO) in the presence of Brønsted acids in DMF. Chemical, electrochemical and UV–vis spectro–electrochemical studies under inert atmosphere indicate a single 2 electron reduction process of complex 1 at first, followed by a 1 electron reduction at the ligand. Infrared spectro–electrochemical studies under CO2 and CO atmosphere allowed us to identify a reduced CO–containing dicobalt complex which results from the electroreduction of CO2. In the presence of trifluoroethanol (TFE), electrocatalytic studies revealed single–site mechanism with up to 94 % selectivity towards CO formation when 1.47 M TFE were present, at –1.35 V vs Saturated Calomel Electrode in DMF (0.39 V overpotential). The low faradaic efficiencies obtained (<50%) are attributed to the generation of CO–containing species formed during the electrocatalytic process, which inhibit the reduction of CO2.


2021 ◽  
Vol 12 (5) ◽  
pp. 6776-6787

A Co-doped ZnO layer was prepared by electrodeposition method on indium doped tin oxide (ITO) substrate using a cathodic reduction from nitrate medium with different doping percentages of cobalt. The bath temperature was controlled at 70 °C. The films were cathodically electrodeposited in a bath containing 5 mM Zn(NO3)2. 6H2O, while the source of Co is Co(NO3)2.6H2O where 0.1M KNO3 was used as supporting electrolyte. The nucleation and growth mechanism of Co-doped ZnO nuclei have been studied by cyclic voltammetry and chronoamperometry. The cyclic voltammetry shows that the electrodeposition of ZnO and Co-doped ZnO at a negative potential around -1.0 V versus saturated calomel electrode (SCE) is a quasi-reversible reaction controlled by the diffusion process. Comparing current transients curves obtained by the chronoamperometric method with the theoretical curves of current density j versus t ½ allows us to say that the nucleation is 3D instantaneous, as shown in SEM analysis. The presence of Co does not modify the nucleation and growth mechanism. The XRD patterns show that the substitution of zinc by cobalt does not change the würtzite crystal structure, but the crystallite size decreases with the cobalt percentage. The transmittance spectra indicate that the Co-doped ZnO films are transparent in the visible range. The optical gap increases with the doping percentage of cobalt.


Nanomaterials ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 2418
Author(s):  
Jujiao Zhao ◽  
Bo Shang ◽  
Jun Zhai

N-doped graphene samples with different N species contents were prepared by a two-step synthesis method and evaluated as electrocatalysts for the nitrate reduction reaction (NORR) for the first time. In an acidic solution with a saturated calomel electrode as reference, the pyridinic-N dominant sample (NGR2) had an onset of 0.932 V and a half-wave potential of 0.833 V, showing the superior activity towards the NORR compared to the pyrrolic-N dominant N-doped graphene (onset potential: 0.850 V, half-wave potential: 0.732 V) and the pure graphene (onset potential: 0.698 V, half-wave potential: 0.506 V). N doping could significantly boost the NORR performance of N-doped graphene, especially the contribution of pyridinic-N. Density functional theory calculation revealed the pyridinic-N facilitated the desorption of NO, which was kinetically involved in the process of the NORR. The findings of this work would be valuable for the development of metal-free NORR electrocatalysts.


Processes ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 1592
Author(s):  
Chunxiao Zhang ◽  
Shenglin Yan ◽  
Jing Lin ◽  
Qing Hu ◽  
Juhua Zhong ◽  
...  

Due to CO2 mass transfer limitation as well as the competition of hydrogen evolution reaction in electroreduction of CO2 in the aqueous electrolyte, Zn-based electrodes normally exhibit unsatisfying selectivity for CO production, especially at high potentials. In this work, we introduced a zinc myristate (Zn [CH3(CH2)12COO]2) hydrophobic layer on the surface of zinc foam electrode by an electrodeposition method. The obtained hydrophobic zinc foam electrode showed a high Faradaic efficiency (FE) of 91.8% for CO at −1.9 V (vs. saturated calomel electrode, SCE), which was a remarkable improvement over zinc foam (FECO = 81.87%) at the same potentials. The high roughness of the hydrophobic layer has greatly increased the active surface area and CO2 mass transfer performance by providing abundant gas-liquid-solid contacting area. This work shows adding a hydrophobic layer on the surface of the catalyst is an effective way to improve the electrochemical CO2 reduction performance.


Molecules ◽  
2021 ◽  
Vol 26 (14) ◽  
pp. 4115
Author(s):  
Severyn Salis ◽  
Nadia Spano ◽  
Marco Ciulu ◽  
Ignazio Floris ◽  
Maria I. Pilo ◽  
...  

5-(hydroxymethyl)furan-2-carbaldehyde, better known as hydroxymethylfurfural (HMF), is a well-known freshness parameter of honey: although mostly absent in fresh samples, its concentration tends to increase naturally with aging. However, high quantities of HMF are also found in fresh but adulterated samples or honey subjected to thermal or photochemical stresses. In addition, HMF deserves further consideration due to its potential toxic effects on human health. The processes at the origin of HMF formation in honey and in other foods, containing saccharides and proteins—mainly non-enzymatic browning reactions—can also produce other furanic compounds. Among others, 2-furaldehyde (2F) and 2-furoic acid (2FA) are the most abundant in honey, but also their isomers (i.e., 3-furaldehyde, 3F, and 3-furoic acid, 3FA) have been found in it, although in small quantities. A preliminary characterization of HMF, 2F, 2FA, 3F, and 3FA by cyclic voltammetry (CV) led to hypothesizing the possibility of a comprehensive quantitative determination of all these compounds using a simple and accurate square wave voltammetry (SWV) method. Therefore, a new parameter able to provide indications on quality of honey, named “Furanic Index” (FI), was proposed in this contribution, which is based on the simultaneous reduction of all analytes on an Hg electrode to ca. −1.50 V vs. Saturated Calomel Electrode (SCE). The proposed method, validated, and tested on 10 samples of honeys of different botanical origin and age, is fast and accurate, and, in the case of strawberry tree honey (Arbutus unedo), it highlighted the contribution to the FI of the homogentisic acid (HA), i.e., the chemical marker of the floral origin of this honey, which was quantitatively reduced in the working conditions. Excellent agreement between the SWV and Reverse-Phase High-Performance Liquid Chromatography (RP-HPLC) data was observed in all samples considered.


Author(s):  
Gina Genoveva ISTRATE ◽  
Alina Crina MUREȘAN

In this paper the corrosion behavior of different materials has been evaluated based on exposure in seawater. The laboratory immersion test technique has been applied to evaluate the effect of seawater on the corrosion behavior of different materials. In three sets of experiments, carbon steels (A681 Type O7), austenitic stainless steels (316L) and aluminium alloys (Al5083) were utilized. The specimens were fixed fully submerged in seawater. The corrosion process was evaluated using weight loss method, open-circuit potential measurements (OCP) and polarization techniques. To determine gravimetric index and the rate of penetration, samples were immersed in corrosive environment for 89 days and weighed periodically. The electrochemical experiments were conducted with a Potentiostat/Galvanostat (PGP 201) analyzer. It was connected to a PC. The Voltamaster software was used for electrochemical data analysis. A three-electrode cell composed of a specimen as a working electrode, Pt as counter electrode, and saturated calomel electrode (SCE) (Hg (l)/ Hg2Cl2 (s)) as a reference electrode were used for the tests. The weight loss tests revealed the lowest corrosion rate values for stainless steel and aluminium alloys, indicating a beneficial use for these materials in marine environments. The potentiodynamic method shows that the lowest corrosion rate in seawater (2.8 μm /year) was obtained for the Al5083 alloy, and the highest value of the corrosion rate (41.67 μm/year) for A681 carbon steel.


2021 ◽  
Vol 8 ◽  
Author(s):  
Claudia Cristina Biguetti ◽  
Franco Cavalla ◽  
Angélica Cristina Fonseca ◽  
Andre Petenucci Tabanez ◽  
Danyal A. Siddiqui ◽  
...  

Corrosion resistance is a key feature of titanium biocompatibility. However, Ti surfaces exposed to critical environments (such as, chronic infection and inflammation) can undergo corrosion processes in vivo, leading to an unfavorable biological response and clinical failure, which remains poorly explored. In this study, we characterized an experimental model to replicate the surface features of Ti corrosion process observed within in vivo failures, and the cellular, tissue and molecular events associated with corroded Ti surface implantation into subcutaneous and bone tissue of C57Bl/6 mice. Prior to in vivo implantation, commercially pure Ti Commercially pure titanium and Ti–6Al–4V alloy (Ti64) specimens were exposed to electrochemical polarization in 30% citric acid, while being polarized at 9 V against a saturated calomel electrode for 20 min. The electrochemical attack induced accelerated corrosion on both Ti-based specimens, producing structural and chemical changes on the surface, comparable to changes observed in failed implants. Then, microscopy and molecular parameters for healing and inflammation were investigated following control and corroded Ti implantation in subcutaneous (cpTi disks) and oral osseointegration (Ti64 screws) models at 3, 7, 14 and 21 days. The host response was comparatively evaluated between control and corroded Ti groups by microCT (bone), histology (H&amp;E, histomorphometry, immunostaining and picrosirius red), and real-time PCR array for inflammatory and healings markers. Corroded cpTi disks and Ti64 screws induced a strong foreign body response (FBR) from 3 to 21 days-post implantation, with unremitting chronic inflammatory reaction lasting up to 21 days in both subcutaneous and osseointegration models. In the subcutaneous model, FBR was accompanied by increased amount of blood vessels and their molecular markers, as well as increased TRAP+ foreign body giant cell count. In the osseointegration model, failures were identified by an osteolytic reaction/bone loss detected by microCT and histological analyses. The corroded devices were associated with a dominant M1-type response, while controls showed transient inflammation, an M2-type response, and suitable healing and osseointegration. In conclusion, corrosion of Ti-based biomaterials induced exacerbated inflammatory response in both connective tissue and bone, linked to the upregulation of fibrosis, pro-inflammatory and osteoclastic markers and resulted in unfavorable healing and osseointegration outcomes.


Coatings ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 448
Author(s):  
Lucien Reclaru ◽  
Lavinia Cosmina Ardelean

In the manufacturing of hypotubes for coronary applications, austenitic steels of types 304, 304, or 316 L are being used. The manufacturing process involves bending steel strips into tubes and the continuous longitudinal welding of the tubes. Manufacturing also includes heat treatments and stretching operations to achieve an external/internal diameter of 0.35/0.23 mm, with a tolerance of +/− 0.01 mm. Austenitic steels are sensitive to localized corrosion (pitting, crevice, and intergranular) that results from the welding process and various heat treatments. An extremely important step is the cleaning and the internal and external passivation of the hypotube surface. During patient interventions, there is a high risk of metal cations being released in contact with human blood. The aim of this study was to evaluate the state of passivation and corrosion resistance by using electrochemical methods and specific intergranular corrosion tests (the Strauss test). There were difficulties in passivating the hypotubes and assessing the corrosion phenomena in the interior of the tubes. Assessments were made by plotting the open circuit potential curves and exploring the polarization curves in the Tafel domain range of −50 mV vs Ecorr (redox potential) and +150 mV vs saturated calomel electrode (SCE, reference micro-electrode) for both the external and the internal surfaces of the hypotubes. The tested hypotubes did not exhibit intergranular corrosion, as mass losses were low and, in general, close to the limit of the analytical balance. Electrochemical techniques made the differentiation of the passivation state of the tested hypotubes possible. The measured currents were of the order of nano–pico amperes, and the quantities of electrical charges consumed for corrosion were of the order of micro–nano coulombs.


2021 ◽  
Vol 16 (2) ◽  
pp. 234-243
Author(s):  
Fahd Arboui ◽  
Sid Ahmed Amzert ◽  
Mohamed Nadir Boucherit ◽  
Salah Hanini ◽  
Khaoula Ghezali

The efficiency of permanganates to inhibit the scale deposit captured the attention for more investigation on their role as corrosion inhibitor. In this article, the effect of permanganate as corrosion inhibitor on 316L stainless steel in NaCl solution is investigated. The potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) have been performed by varying the electrode stirring speed, the concentration of permanganate ions, pH and the temperature. The results show that the permanganate ions increase the cathodic and anodic currents under effect of stirring speed, due to oxygen reduction reaction and the reduction of permanganate ions. Electrochemical results indicate that the deposit of manganese oxide (MnO2) inhibits the pitting corrosion. The inhibition efficiency is up to 98 % for 10−4 mol.dm−3 of permanganate. The temperature reduces the effectiveness of permanganates against pitting corrosion, the pitting potential shifts cathodically from +0.395 V vs. Saturated Calomel Electrode (SCE) at 298 K to +0.275 V vs. SCE at 343 K. Surface morphology of the deposit oxide films and electrode are studied by emission scanning electron microscopy, X-ray diffraction, Fourier transform infrared and Differential Scanning Calorimetry. The analysis of the deposit layer by X-ray diffraction revealed the presence of δ-MnO2 form, with a crystallite size of 3.17 nm.  Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0). 


Sign in / Sign up

Export Citation Format

Share Document