scholarly journals Disconnection somewhere down the line: Multivariate lesion-symptom mapping of the line bisection error

Cortex ◽  
2020 ◽  
Vol 133 ◽  
pp. 120-132
Author(s):  
Daniel Wiesen ◽  
Hans-Otto Karnath ◽  
Christoph Sperber
2020 ◽  
Author(s):  
Daniel Wiesen ◽  
Hans-Otto Karnath ◽  
Christoph Sperber

AbstractLine Bisection is a simple task frequently used in stroke patients to diagnose disorders of spatial perception characterized by a directional bisection bias to the ipsilesional side. However, previous anatomical and behavioural findings are contradictory, and the diagnostic validity of the line bisection task has been challenged. We hereby aimed to re-analyse the anatomical basis of pathological line bisection by using multivariate lesion-symptom mapping and disconnection-symptom mapping based on support vector regression in a sample of 163 right hemispheric acute stroke patients. In line with some previous studies, we observed that pathological line bisection was related to more than a single focal lesion location. Cortical damage primarily to right parietal areas, particularly the inferior parietal lobe, including the angular gyrus, as well as damage to the right basal ganglia contributed to the pathology. In contrast to some previous studies, an involvement of frontal cortical brain areas in the line bisection task was not observed. Subcortically, damage to the right superior longitudinal fasciculus (I, II and III) and arcuate fasciculus as well as the internal capsule was associated with line bisection errors. Moreover, white matter damage of interhemispheric fibre bundles, such as the anterior commissure and posterior parts of the corpus callosum projecting into the left hemisphere, was predictive of pathological deviation in the line bisection task.


2009 ◽  
Vol 36 (S 02) ◽  
Author(s):  
B Machner ◽  
A Sprenger ◽  
U Hansen ◽  
W Heide ◽  
C Helmchen

2021 ◽  
pp. 174749302098455
Author(s):  
Nick A Weaver ◽  
Angelina K Kancheva ◽  
Jae-Sung Lim ◽  
J Matthijs Biesbroek ◽  
Irene MC Huenges Wajer ◽  
...  

Background Post-stroke cognitive impairment can occur after damage to various brain regions, and cognitive deficits depend on infarct location. The Mini-Mental State Examination (MMSE) is still widely used to assess post-stroke cognition, but it has been criticized for capturing only certain cognitive deficits. Along these lines, it might be hypothesized that cognitive deficits as measured with the MMSE primarily involve certain infarct locations. Aims This comprehensive lesion-symptom mapping study aimed to determine which acute infarct locations are associated with post-stroke cognitive impairment on the MMSE. Methods We examined associations between impairment on the MMSE (<5th percentile; normative data) and infarct location in 1198 patients (age 67 ± 12 years, 43% female) with acute ischemic stroke using voxel-based lesion-symptom mapping. As a frame of reference, infarct patterns associated with impairments in individual cognitive domains were determined, based on a more detailed neuropsychological assessment. Results Impairment on the MMSE was present in 420 patients (35%). Large voxel clusters in the left middle cerebral artery territory and thalamus were significantly (p < 0.01) associated with cognitive impairment on the MMSE, with highest odds ratios (>15) in the thalamus and superior temporal gyrus. In comparison, domain-specific impairments were related to various infarct patterns across both hemispheres including the left medial temporal lobe (verbal memory) and right parietal lobe (visuospatial functioning). Conclusions Our findings indicate that post-stroke cognitive impairment on the MMSE primarily relates to infarct locations in the left middle cerebral artery territory. The MMSE is apparently less sensitive to cognitive deficits that specifically relate to other locations.


Author(s):  
Frederik Grosse ◽  
Stefan Mark Rueckriegel ◽  
Ulrich-Wilhelm Thomale ◽  
Pablo Hernáiz Driever

Abstract Purpose Diaschisis of cerebrocerebellar loops contributes to cognitive and motor deficits in pediatric cerebellar brain tumor survivors. We used a cerebellar white matter atlas and hypothesized that lesion symptom mapping may reveal the critical lesions of cerebellar tracts. Methods We examined 31 long-term survivors of pediatric posterior fossa tumors (13 pilocytic astrocytoma, 18 medulloblastoma). Patients underwent neuronal imaging, examination for ataxia, fine motor and cognitive function, planning abilities, and executive function. Individual consolidated cerebellar lesions were drawn manually onto patients’ individual MRI and normalized into Montreal Neurologic Institute (MNI) space for further analysis with voxel-based lesion symptom mapping. Results Lesion symptom mapping linked deficits of motor function to the superior cerebellar peduncle (SCP), deep cerebellar nuclei (interposed nucleus (IN), fastigial nucleus (FN), ventromedial dentate nucleus (DN)), and inferior vermis (VIIIa, VIIIb, IX, X). Statistical maps of deficits of intelligence and executive function mapped with minor variations to the same cerebellar structures. Conclusion We identified lesions to the SCP next to deep cerebellar nuclei as critical for limiting both motor and cognitive function in pediatric cerebellar tumor survivors. Future strategies safeguarding motor and cognitive function will have to identify patients preoperatively at risk for damage to these critical structures and adapt multimodal therapeutic options accordingly.


2021 ◽  
Vol 11 (3) ◽  
pp. 376
Author(s):  
Carmelo Mario Vicario ◽  
Gabriella Martino ◽  
Alex Marcuzzo ◽  
Giuseppe Craparo

Neuroscience research links alexithymia, the difficulty in identifying and describing feelings and emotions, with left hemisphere dominance and/or right hemisphere deficit. To provide behavioral evidence for this neuroscientific hypothesis, we explored the relationship between alexithymia and performance in a line bisection task, a standard method for evaluating visuospatial processing in relation to right hemisphere functioning. We enrolled 222 healthy participants who completed a version of the 20-item Toronto Alexithymia Scale (TAS-20), which measures alexithymia, and were asked to mark (bisect) the center of a 10-cm horizontal segment. The results document a significant rightward shift in the center of the line in participants with borderline and manifest alexithymia compared with non-alexithymic individuals. The higher the TAS-20 score, the greater the rightward shift in the line bisection task. This finding supports the right hemisphere deficit hypothesis in alexithymia and suggests that visuospatial abnormalities may be an important component of this mental condition.


2020 ◽  
Vol 22 (Supplement_2) ◽  
pp. ii212-ii212
Author(s):  
John Andrews ◽  
Nathan Cahn ◽  
Benjamin Speidel ◽  
Valerie Lu ◽  
Mitchel Berger ◽  
...  

Abstract Brodmann’s areas 44/45 of the inferior frontal gyrus (IFG), are the seat of Broca’s area. The Western Aphasia Battery is a commonly used language battery that diagnoses aphasias based on fluency, comprehension, naming and repetition. Broca’s aphasia is defined as low fluency (0-4/10), retained comprehension (4-10/10), and variable deficits in repetition (0-7.9/10) and naming (0-8/10). The purpose of this study was to find anatomic areas associated with Broca’s aphasia. Patients who underwent resective brain surgery in the dominant hemisphere were evaluated with standardized language batteries pre-op, POD 2, and 1-month post-op. The resection cavities were outlined to construct 3D-volumes of interest. These were aligned using an affine transformation to MNI brain space. A voxel-based lesion-symptom mapping (VLSM) algorithm determined areas associated with Broca’s aphasia when incorporated into a resection. Post-op MRIs were reviewed blindly and percent involvement of pars orbitalis, triangularis and opercularis was recorded. 287 patients had pre-op and POD 2 language evaluations and 178 had 1 month post-op language evaluation. 82/287 patients had IFG involvement in resections. Only 5/82 IFG resections led to Broca’s aphasia. 11/16 patients with Broca’s aphasia at POD 2 had no involvement of IFG in resection. 35% of IFG resections were associated with non-specific dysnomia and 36% were normal. By one-month, 76% of patients had normal speech. 80% of patients with Broca’s aphasia at POD 2 improved to normal speech at 1-month, with 20% improved to non-specific dysnomia. The most highly correlated (P&lt; 0.005) anatomic areas with Broca’s aphasia were juxta-sylvian pre- and post-central gyrus extending to supramarginal gyrus. While Broca’s area resections were rarely associated with Broca’s aphasia, juxta-sylvian pre- and post-central gyri extending to the supramarginal gyrus were statistically associated with Broca’s type aphasia when resected. These results have implications for planning resective brain surgery in these presumed eloquent brain areas.


Author(s):  
Selma Lugtmeijer ◽  
◽  
Linda Geerligs ◽  
Frank Erik de Leeuw ◽  
Edward H. F. de Haan ◽  
...  

AbstractWorking memory and episodic memory are two different processes, although the nature of their interrelationship is debated. As these processes are predominantly studied in isolation, it is unclear whether they crucially rely on different neural substrates. To obtain more insight in this, 81 adults with sub-acute ischemic stroke and 29 elderly controls were assessed on a visual working memory task, followed by a surprise subsequent memory test for the same stimuli. Multivariate, atlas- and track-based lesion-symptom mapping (LSM) analyses were performed to identify anatomical correlates of visual memory. Behavioral results gave moderate evidence for independence between discriminability in working memory and subsequent memory, and strong evidence for a correlation in response bias on the two tasks in stroke patients. LSM analyses suggested there might be independent regions associated with working memory and episodic memory. Lesions in the right arcuate fasciculus were more strongly associated with discriminability in working memory than in subsequent memory, while lesions in the frontal operculum in the right hemisphere were more strongly associated with criterion setting in subsequent memory. These findings support the view that some processes involved in working memory and episodic memory rely on separate mechanisms, while acknowledging that there might also be shared processes.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Alexander A. Aabedi ◽  
Sofia Kakaizada ◽  
Jacob S. Young ◽  
Jasleen Kaur ◽  
Olivia Wiese ◽  
...  

AbstractLexical retrieval requires selecting and retrieving the most appropriate word from the lexicon to express a desired concept. Few studies have probed lexical retrieval with tasks other than picture naming, and when non-picture naming lexical retrieval tasks have been applied, both convergent and divergent results emerged. The presence of a single construct for auditory and visual processes of lexical retrieval would influence cognitive rehabilitation strategies for patients with aphasia. In this study, we perform support vector regression lesion-symptom mapping using a brain tumor model to test the hypothesis that brain regions specifically involved in lexical retrieval from visual and auditory stimuli represent overlapping neural systems. We find that principal components analysis of language tasks revealed multicollinearity between picture naming, auditory naming, and a validated measure of word finding, implying the existence of redundant cognitive constructs. Nonparametric, multivariate lesion-symptom mapping across participants was used to model accuracies on each of the four language tasks. Lesions within overlapping clusters of 8,333 voxels and 21,512 voxels in the left lateral prefrontal cortex (PFC) were predictive of impaired picture naming and auditory naming, respectively. These data indicate a convergence of heteromodal lexical retrieval within the PFC.


2010 ◽  
Vol 16 (1) ◽  
pp. 1-13 ◽  
Author(s):  
Shinsuke Sato ◽  
Akio Tsubahara ◽  
Yoichiro Aoyagi ◽  
Takashi Hiraoka ◽  
Sumire Hasegawa ◽  
...  

AbstractWe used desk-based tasks to evaluate and clarify the effects of colour lightness differences (Liebmann effect) in patients with left unilateral spatial neglect (USN) following stroke. Participants were 30 adults with USN (16 men and 14 women; mean age = 72.3 years, SD = 8.9 years). They took the ‘Letter Cancellation Test’ of the Japanese version of the Behavioral Inattention Test using two types of paper: black letters with a yellow background (‘black on yellow’) and red letters with a green background (‘red on green’). They also took the Line Bisection Test and their laterality index (LI) was also determined. Paired t-tests were computed comparing the LI by colour displays. LI was higher for ‘black on yellow’ than for ‘red on green’ in patients with mild left USN. However, LI for ‘red on green’ was higher in patients with severe left USN. Colour lightness differences are likely on the left side in patients with relatively mild left USN, but not in those with severe left USN.


Sign in / Sign up

Export Citation Format

Share Document