scholarly journals Convergence of heteromodal lexical retrieval in the lateral prefrontal cortex

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Alexander A. Aabedi ◽  
Sofia Kakaizada ◽  
Jacob S. Young ◽  
Jasleen Kaur ◽  
Olivia Wiese ◽  
...  

AbstractLexical retrieval requires selecting and retrieving the most appropriate word from the lexicon to express a desired concept. Few studies have probed lexical retrieval with tasks other than picture naming, and when non-picture naming lexical retrieval tasks have been applied, both convergent and divergent results emerged. The presence of a single construct for auditory and visual processes of lexical retrieval would influence cognitive rehabilitation strategies for patients with aphasia. In this study, we perform support vector regression lesion-symptom mapping using a brain tumor model to test the hypothesis that brain regions specifically involved in lexical retrieval from visual and auditory stimuli represent overlapping neural systems. We find that principal components analysis of language tasks revealed multicollinearity between picture naming, auditory naming, and a validated measure of word finding, implying the existence of redundant cognitive constructs. Nonparametric, multivariate lesion-symptom mapping across participants was used to model accuracies on each of the four language tasks. Lesions within overlapping clusters of 8,333 voxels and 21,512 voxels in the left lateral prefrontal cortex (PFC) were predictive of impaired picture naming and auditory naming, respectively. These data indicate a convergence of heteromodal lexical retrieval within the PFC.

2020 ◽  
Author(s):  
Alexander Aabedi ◽  
Sofia Kakaizada ◽  
Jacob Young ◽  
Jasleen Kaur ◽  
Olivia Wiese ◽  
...  

Abstract Lexical retrieval requires selecting and retrieving the most appropriate word from the lexicon to express a desired concept. Few studies have probed lexical retrieval with tasks other than picture naming, and when non-picture naming lexical retrieval tasks have been applied, both convergent and divergent results emerged. The presence of a single construct for auditory and visual processes of lexical retrieval would influence cognitive rehabilitation strategies for patients with aphasia. In this study, we perform support vector regression lesion-symptom mapping using a brain tumor model to test the hypothesis that brain regions specifically involved in lexical retrieval from visual and auditory stimuli represent overlapping neural systems. We find that principal components analysis of language tasks revealed multicollinearity between picture naming, auditory naming, and a validated measure of word finding, implying the existence of redundant cognitive constructs. Nonparametric, multivariate lesion-symptom mapping across participants was used to model accuracies on each of the four language tasks. Lesions within overlapping clusters of 8,333 voxels and 21,512 voxels in the left lateral prefrontal cortex (PFC) were predictive of impaired picture naming and auditory naming, respectively. These data indicate a convergence of heteromodal lexical retrieval within the PFC.


2020 ◽  
Author(s):  
Alexander A. Aabedi ◽  
Sofia Kakaizada ◽  
Jacob S. Young ◽  
Olivia Wiese ◽  
Claudia Valdivia ◽  
...  

AbstractLexical retrieval requires selecting and retrieving the most appropriate word from the lexicon to express a desired concept. Prior studies investigating the neuroanatomic underpinnings of lexical retrieval used lesion models that rely on stereotyped vascular distributions, functional neuroimaging methods that lack causal certainty, or awake brain mapping that is typically limited to narrow cortical exposures. Further, few studies have probed lexical retrieval with tasks other than picture naming and when non-picture naming lexical retrieval tasks have been applied, both convergent and divergent models emerged. Because of this existing controversy, we set out to test the hypothesis that cortical and subcortical brain regions specifically involved in lexical retrieval in response to visual and auditory stimuli represent overlapping neural systems. Fifty-three patients with dysnomic aphasia due to dominant-hemisphere brain tumors performed four language tasks: picture naming, auditory naming, text reading, and describing line drawings with correct syntax. A subset of participants also underwent the Quick Aphasia Battery which provides a validated measure of lexical retrieval via the word finding subtest. Generalized linear modeling and principal components analysis revealed multicollinearity between picture naming, auditory naming, and word finding, implying redundancies between the linguistic measures. Support vector regression lesion-symptom mapping across participants was used to model accuracies on each of the four language tasks. Picture naming and auditory naming survived cluster-level corrections. Specifically, lesions within overlapping clusters of 8,333 voxels and 21,512 voxels in the left lateral PFC were predictive of impaired picture naming and auditory naming, respectively. These data indicate a convergence of heteromodal lexical retrieval within the PFC.Importance of the StudyLexical retrieval (i.e., selecting and retrieving words to convey desired concepts) is a crucial component of language processing. However, existing studies of the neuroanatomic underpinnings of lexical retrieval lack causal relationships and have provided conflicting evidence, suggesting both convergent and divergent models. In order to resolve these conflicting models, we used lesion-symptom mapping to investigate lexical retrieval in 53 patients with dominant-hemisphere brain tumors. We observed significant associations between performance on visual and auditory naming tasks. Further, performance on these tasks predicted performance on a validated neuropsychological measure of lexical retrieval. Critically, multivariate, nonparametric lesion-symptom mapping within a brain tumor framework revealed that lesions in overlapping regions of the left lateral prefrontal cortex (PFC) predict impaired visual and auditory naming. In a clinical context, this approach to identifying causal brain-behavior relationships could help to guide brain tumor therapies such as cytoreductive surgery and supportive rehabilitation services.


2021 ◽  
Vol 3 (3) ◽  
Author(s):  
Jonathan Vivian Dickens ◽  
Andrew T DeMarco ◽  
Candace M van der Stelt ◽  
Sarah F Snider ◽  
Elizabeth H Lacey ◽  
...  

Abstract Alexia is common in the context of aphasia. It is widely agreed that damage to phonological and semantic systems not specific to reading causes co-morbid alexia and aphasia. Studies of alexia to date have only examined phonology and semantics as singular processes or axes of impairment, typically in the context of stereotyped alexia syndromes. However, phonology, in particular, is known to rely on subprocesses, including sensory-phonological processing, motor-phonological processing, and sensory-motor integration. Moreover, many people with stroke aphasia demonstrate mild or mixed patterns of reading impairment that do not fit neatly with one syndrome. This cross-sectional study tested whether the hallmark symptom of phonological reading impairment, the lexicality effect, emerges from damage to a specific subprocess of phonology in stroke patients not selected for alexia syndromes. Participants were 30 subjects with left-hemispheric stroke and 37 age- and education-matched controls. A logistic mixed-effects model tested whether post-stroke impairments in sensory phonology, motor phonology, or sensory-motor integration modulated the effect of item lexicality on patient accuracy in reading aloud. Support vector regression voxel-based lesion-symptom mapping localized brain regions necessary for reading and non-orthographic phonological processing. Additionally, a novel support vector regression structural connectome-symptom mapping method identified the contribution of both lesioned and spared but disconnected, brain regions to reading accuracy and non-orthographic phonological processing. Specifically, we derived whole-brain structural connectomes using constrained spherical deconvolution-based probabilistic tractography and identified lesioned connections based on comparisons between patients and controls. Logistic mixed-effects regression revealed that only greater motor-phonological impairment related to lower accuracy reading aloud pseudowords versus words. Impaired sensory-motor integration was related to lower overall accuracy in reading aloud. No relationship was identified between sensory-phonological impairment and reading accuracy. Voxel-based and structural connectome lesion-symptom mapping revealed that lesioned and disconnected left ventral precentral gyrus related to both greater motor-phonological impairment and lower sublexical reading accuracy. In contrast, lesioned and disconnected left temporoparietal cortex is related to both impaired sensory-motor integration and reduced overall reading accuracy. These results clarify that at least two dissociable phonological processes contribute to the pattern of reading impairment in aphasia. First, impaired sensory-motor integration, caused by lesions disrupting the left temporoparietal cortex and its structural connections, non-selectively reduces accuracy in reading aloud. Second, impaired motor-phonological processing, caused at least partially by lesions disrupting left ventral premotor cortex and structural connections, selectively reduces sublexical reading accuracy. These results motivate a revised cognitive model of reading aloud that incorporates a sensory-motor phonological circuit.


2019 ◽  
Author(s):  
Cortney M. Howard ◽  
Louisa L. Smith ◽  
H. Branch Coslett ◽  
Laurel J. Buxbaum

The mechanisms and brain regions underlying error monitoring in complex action are poorly understood, yet errors and impaired error correction in these tasks are hallmarks of apraxia, a common disorder associated with left hemisphere stroke. Accounts of monitoring of language posit an internal route by which production planning or competition between candidate representations provide predictive signals that monitoring is required to prevent error, and an external route in which output is monitored using the comprehension system. Abnormal reliance on the external route has been associated with damage to brain regions critical for sensory-motor transformation and a pattern of gradual error ‘clean-up’ called conduite d’approche (CD). Action pantomime data from 67 participants with left hemisphere stroke were consistent with versions of internal route theories positing that competition signals monitoring requirements. Support Vector Regression Lesion Symptom Mapping (SVR-LSM) showed that lesions in the inferior parietal, posterior temporal, and arcuate fasciculus/superior longitudinal fasciculus predicted action conduite d’approche, overlapping the regions previously observed in the language domain. A second experiment with 12 patients who produced substantial action CD assessed whether factors impacting the internal route (action production ability, competition) versus external route (vision of produced actions, action comprehension) influenced correction attempts. In these ‘high CD’ patients, vision of produced actions and integrity of gesture comprehension interacted to determine successful error correction, supporting external route theories. Viewed together, these and other data suggest that skilled actions are monitored both by an internal route in which conflict aids in detection and correction of errors during production planning, and an external route that detects mismatches between produced actions and stored knowledge of action appearance. The parallels between language and action monitoring mechanisms and neuroanatomical networks pave the way for further exploration of common and distinct processes across these domains.


2019 ◽  
Author(s):  
Ana F. Palenciano ◽  
Carlos González-García ◽  
Juan E. Arco ◽  
Luiz Pessoa ◽  
María Ruz

AbstractRecent multivariate analyses of brain data have boosted our understanding of the organizational principles that shape neural coding. However, most of this progress has focused on perceptual visual regions (Connolly et al., 2012), whereas far less is known about the organization of more abstract, action-oriented representations. In this study, we focused on humans’ remarkable ability to turn novel instructions into actions. While previous research shows that instruction encoding is tightly linked to proactive activations in fronto-parietal brain regions, little is known about the structure that orchestrates such anticipatory representation. We collected fMRI data while participants (both males and females) followed novel complex verbal rules that varied across control-related variables (integrating within/across stimuli dimensions, response complexity, target category) and reward expectations. Using Representational Similarity Analysis (Kriegeskorte et al., 2008) we explored where in the brain these variables explained the organization of novel task encoding, and whether motivation modulated these representational spaces. Instruction representations in the lateral prefrontal cortex were structured by the three control-related variables, while intraparietal sulcus encoded response complexity and the fusiform gyrus and precuneus organized its activity according to the relevant stimulus category. Reward exerted a general effect, increasing the representational similarity among different instructions, which was robustly correlated with behavioral improvements. Overall, our results highlight the flexibility of proactive task encoding, governed by distinct representational organizations in specific brain regions. They also stress the variability of motivation-control interactions, which appear to be highly dependent on task attributes such as complexity or novelty.Significance StatementIn comparison with other primates, humans display a remarkable success in novel task contexts thanks to our ability to transform instructions into effective actions. This skill is associated with proactive task-set reconfigurations in fronto-parietal cortices. It remains yet unknown, however, how the brain encodes in anticipation the flexible, rich repertoire of novel tasks that we can achieve. Here we explored cognitive control and motivation-related variables that might orchestrate the representational space for novel instructions. Our results showed that different dimensions become relevant for task prospective encoding depending on the brain region, and that the lateral prefrontal cortex simultaneously organized task representations following different control-related variables. Motivation exerted a general modulation upon this process, diminishing rather than increasing distances among instruction representations.


2017 ◽  
Vol 38 (8) ◽  
pp. 1299-1311 ◽  
Author(s):  
Lei Zhao ◽  
J Matthijs Biesbroek ◽  
Lin Shi ◽  
Wenyan Liu ◽  
Hugo J Kuijf ◽  
...  

Lesion location is an important determinant for post-stroke cognitive impairment. Although several ‘strategic’ brain regions have previously been identified, a comprehensive map of strategic brain regions for post-stroke cognitive impairment is lacking due to limitations in sample size and methodology. We aimed to determine strategic brain regions for post-stroke cognitive impairment by applying multivariate lesion-symptom mapping in a large cohort of 410 acute ischemic stroke patients. Montreal Cognitive Assessment at three to six months after stroke was used to assess global cognitive functioning and cognitive domains (memory, language, attention, executive and visuospatial function). The relation between infarct location and cognition was assessed in multivariate analyses at the voxel-level and the level of regions of interest using support vector regression. These two assumption-free analyses consistently identified the left angular gyrus, left basal ganglia structures and the white matter around the left basal ganglia as strategic structures for global cognitive impairment after stroke. A strategic network involving several overlapping and domain-specific cortical and subcortical structures was identified for each of the cognitive domains. Future studies should aim to develop even more comprehensive infarct location-based models for post-stroke cognitive impairment through multicenter studies including thousands of patients.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Alina Königsberg ◽  
Andrew T. DeMarco ◽  
Carola Mayer ◽  
Anke Wouters ◽  
Eckhard Schlemm ◽  
...  

AbstractStroke has a deleterious impact on quality of life. However, it is less well known if stroke lesions in different brain regions are associated with reduced quality of life (QoL). We therefore investigated this association by multivariate lesion-symptom mapping. We analyzed magnetic resonance imaging and clinical data from the WAKE-UP trial. European Quality of Life 5 Dimensions (EQ-5D) 3 level questionnaires were completed 90 days after stroke. Lesion symptom mapping was performed using a multivariate machine learning algorithm (support vector regression) based on stroke lesions 22–36 h after stroke. Brain regions with significant associations were explored in reference to white matter tracts. Of 503 randomized patients, 329 were included in the analysis (mean age 65.4 years, SD 11.5; median NIHSS = 6, IQR 4–9; median EQ-5D score 90 days after stroke 1, IQR 0–4, median lesion volume 3.3 ml, IQR 1.1–16.9 ml). After controlling for lesion volume, significant associations between lesions and EQ-5D score were detected for the right putamen, and internal capsules of both hemispheres. Multivariate lesion inference analysis revealed an association between injuries of the cortico-spinal tracts with worse self-reported quality of life 90 days after stroke in comparably small stroke lesions, extending previous reports of the association of striato-capsular lesions with worse functional outcome. Our findings are of value to identify patients at risk of impaired QoL after stroke.


2020 ◽  
Vol 9 (1) ◽  
pp. 105-115 ◽  
Author(s):  
Ziliang Wang ◽  
Haohao Dong ◽  
Xiaoxia Du ◽  
Jin-Tao Zhang ◽  
Guang-Heng Dong

Abstract Objectives Understanding the neural mechanisms underlying Internet gaming disorder (IGD) is essential for the condition's diagnosis and treatment. Nevertheless, the pathological mechanisms of IGD remain elusive at present. Hence, we employed multi-voxel pattern analysis (MVPA) and spectral dynamic causal modeling (spDCM) to explore this issue. Methods Resting-state fMRI data were collected from 103 IGD subjects (male = 57) and 99 well-matched recreational game users (RGUs, male = 51). Regional homogeneity was calculated as the feature for MVPA based on the support vector machine (SVM) with leave-one- out cross-validation. Mean time series data extracted from the brain regions in accordance with the MVPA results were used for further spDCM analysis. Results Results display a high accuracy of 82.67% (sensitivity of 83.50% and specificity of 81.82%) in the classification of the two groups. The most discriminative brain regions that contributed to the classification were the bilateral parahippocampal gyrus (PG), right anterior cingulate cortex (ACC), and middle frontal gyrus (MFG). Significant correlations were found between addiction severity (IAT and DSM scores) and the ReHo values of the brain regions that contributed to the classification. Moreover, the results of spDCM showed that compared with RGU, IGD showed decreased effective connectivity from the left PG to the right MFG and from the right PG to the ACC and decreased self-connection in the right PG. Conclusions These results show that the weakening of the PG and its connection with the prefrontal cortex, including the ACC and MFG, may be an underlying mechanism of IGD.


Sign in / Sign up

Export Citation Format

Share Document