High-performance GPU parallel solver for 3D modeling of electron transfer during ion–surface interaction

2017 ◽  
Vol 210 ◽  
pp. 72-78 ◽  
Author(s):  
I.K. Gainullin
2021 ◽  
Author(s):  
Mingming Su ◽  
Yajing Hu ◽  
Ao Yu ◽  
Zhiyao Peng ◽  
Wangtao Long ◽  
...  

Broadband photodetectors fabricated with organic molecules have the advantages of low cost, high flexibility, easy processing and low-temperature requirement. Fullerene molecules, due to the electron acceptor and photoinduced electron transfer...


2021 ◽  
Author(s):  
Eun Seop Yoon ◽  
Bong Gill Choi ◽  
Hwan-Jin Jeon

Abstract The development of energy storage electrode materials is important for enhancing the electrochemical performance of supercapacitors. Despite extensive research on improving electrochemical performance with polymer-based materials, electrode materials with micro/nanostructures are needed for fast and efficient ion and electron transfer. In this work, highly ordered phosphomolybdate (PMoO)-grafted polyaniline (PMoO-PAI) deposited onto Au hole-cylinder nanopillar arrays is developed for high-performance pseudocapacitors. The three-dimensional nanostructured arrays are easily fabricated by secondary sputtering lithography, which has recently gained attention and features a high resolution of 10 nm, a high aspect ratio greater than 20, excellent uniformity/accuracy/precision, and compatibility with large area substrates. These 10nm scale Au nanostructures with a high aspect ratio of ~30 on Au substrates facilitate efficient ion and electron transfer. The resultant PMoO-PAI electrode exhibits outstanding electrochemical performance, including a high specific capacitance of 114 mF/cm2, a high-rate capability of 88%, and excellent long-term stability.


2020 ◽  
Vol 12 (13) ◽  
pp. 2128 ◽  
Author(s):  
Mehmet Buyukdemircioglu ◽  
Sultan Kocaman

The increasing efforts in developing smart city concepts are often coupled with three-dimensional (3D) modeling of envisioned designs. Such conceptual designs and planning are multi-disciplinary in their nature. Realistic implementations must include existing urban structures for proper planning. The development of a participatory planning and presentation platform has several challenges from scene reconstruction to high-performance visualization, while keeping the fidelity of the designs. This study proposes a framework for the integrated representation of existing urban structures in CityGML LoD2 combined with a future city model in LoD3. The study area is located in Sahinbey Municipality, Gaziantep, Turkey. Existing city parts and the terrain were reconstructed using high-resolution aerial images, and the future city was designed in a CAD (computer-aided design) environment with a high level of detail. The models were integrated through a high-resolution digital terrain model. Various 3D modeling approaches together with model textures and semantic data were implemented and compared. A number of performance tuning methods for efficient representation and visualization were also investigated. The study shows that, although the object diversity and the level of detail in the city models increase, automatic reconstruction, dynamic updating, and high-performance web-based visualization of the models remain challenging.


2013 ◽  
Vol 25 (32) ◽  
pp. 4425-4430 ◽  
Author(s):  
Chang-Zhi Li ◽  
Chu-Chen Chueh ◽  
Feizhi Ding ◽  
Hin-Lap Yip ◽  
Po-Wei Liang ◽  
...  

2021 ◽  
Author(s):  
Seung-Jae Shin ◽  
Hansol Choi ◽  
Stefan Ringe ◽  
Da Hye Won ◽  
Chang Hyuck Choi ◽  
...  

Converting carbon dioxide (CO2) into valuable products is one of the most important processes for a sustainable society. Especially, the electrochemical CO2 reduction reaction (CO2RR) offers an effective means, but its reaction mechanism is not yet fully understood. Here, we demonstrate that concerted cation–electron transfer (CCET) is a key catalytic step in the CO2RR to carbon monoxide. The first-principles-based multiscale simulation identifies a single cation that coordinates a CO2− intermediate adsorbed on Ag electrode. The CCET is experimentally verified by a collapse of the CO2RR polarization curves upon correcting for the thermodynamic activity of the cation. As further confirmation, a kinetic study shows that the CO2RR obeys first-order kinetics on the local cation concentration at the electric double layer (estimated by measuring the electrode surface charge). Finally, this work unveils the fundamental origin of different CO2RR activity depending on the species of alkali metal cation, and further highlights the importance of ion-pairing tendency of the cations for electrochemical interface design to achieve high-performance CO2 electrolysis.


Molecules ◽  
2020 ◽  
Vol 25 (14) ◽  
pp. 3218
Author(s):  
Guoqing Chen ◽  
Xuming Zhang ◽  
Yuanhang Ma ◽  
Hao Song ◽  
Chaoran Pi ◽  
...  

Structural design is often investigated to decrease the electron transfer depletion in/on the pseudocapacitive electrode for excellent capacitance performance. However, a simple way to improve the internal and external electron transfer efficiency is still challenging. In this work, we prepared a novel structure composed of cobalt (Co) nanoparticles (NPs) embedded MnO nanowires (NWs) with an N-doped carbon (NC) coating on carbon cloth (CC) by in situ thermal treatment of polydopamine (PDA) coated MnCo2O4.5 NWs in an inert atmosphere. The PDA coating was carbonized into the NC shell and simultaneously reduced the MnCo2O4.5 to Co NPs and MnO NWs, which greatly improve the surface and internal electron transfer ability on/in MnO boding well supercapacitive properties. The hybrid electrode shows a high specific capacitance of 747 F g−1 at 1 A g−1 and good cycling stability with 93% capacitance retention after 5,000 cycles at 10 A g−1. By coupling with vanadium nitride with an N-doped carbon coating (VN@NC) negative electrode, the asymmetric supercapacitor delivers a high energy density of 48.15 Wh kg−1 for a power density of 0.96 kW kg−1 as well as outstanding cycling performance with 82% retention after 2000 cycles at 10 A g−1. The electrode design and synthesis suggests large potential in the production of high-performance energy storage devices.


2019 ◽  
Vol 7 (40) ◽  
pp. 22871-22878 ◽  
Author(s):  
Qiong Su ◽  
Xinxin Cao ◽  
Ting Yu ◽  
Xiangzhong Kong ◽  
Yaping Wang ◽  
...  

Dual carbon-protected MoSe2 nanorods can enable controlled volume fluctuation, permit continuous electron transfer, and offer more active sites and good redox reversibility.


Author(s):  
Wen-Wei Song ◽  
Bing Wang ◽  
Chen-Ning Li ◽  
Shi-Ming Wang ◽  
Zhengbo Han

Improving the electron transfer kinetics and optimizing the electrode morphology for efficient electrolyte diffusion are effective strategies for achieving high-performance asymmetric supercapacitors (ASCs). Herein, we construct a novel ZIF-67-derived 3D...


Sign in / Sign up

Export Citation Format

Share Document