Absorption Cross-Section Measurements of Ortho-xylyl Radical in the 460.1-475.1 nm Region and Investigation of its Temperature and Pressure Dependence Using Cavity Ringdown Spectroscopy

2020 ◽  
pp. 138314
Author(s):  
Prasanna Kumar Bej ◽  
Koushik Mondal ◽  
B. Rajakumar
2015 ◽  
Vol 735 ◽  
pp. 260-264
Author(s):  
Tay Ching En Marcus ◽  
Michael David ◽  
Maslina Yaacob ◽  
Mohd Rashidi Salim ◽  
Nabihah Hussin ◽  
...  

Accurate value of absorption cross section is required for correct measurement of ozone concentration. Measurement of ozone has been done at different altitude and pressure. However, previous work has failed to establish significant relation between pressure and ozone absorption cross section. Therefore, this work aims to establish relation between pressure and maximum ozone absorption cross section via spectralcalc.com gas cell simulator. Simulation results show maximum absorption cross section 1.148×10-21 m2 molecule-1 and maximum absorption wavelength 255.442 nm are independent of pressure changes from 0.1 atm to 3.0 atm. Thus, measurement of ozone concentration at maximum absorption wavelength is strongly recommended due to negligible pressure dependence.


AIP Advances ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 025120
Author(s):  
C. Stanford ◽  
M. J. Wilson ◽  
B. Cabrera ◽  
M. Diamond ◽  
N. A. Kurinsky ◽  
...  

2021 ◽  
pp. 000370282199044
Author(s):  
Wubin Weng ◽  
Shen Li ◽  
Marcus Aldén ◽  
Zhongshan Li

Ammonia (NH3) is regarded as an important nitrogen oxides (NOx) precursor and also as an effective reductant for NOx removal in energy utilization through combustion, and it has recently become an attractive non-carbon alternative fuel. To have a better understanding of thermochemical properties of NH3, accurate in situ detection of NH3 in high temperature environments is desirable. Ultraviolet (UV) absorption spectroscopy is a feasible technique. To achieve quantitative measurements, spectrally resolved UV absorption cross-sections of NH3 in hot gas environments at different temperatures from 295 K to 590 K were experimentally measured for the first time. Based on the experimental results, vibrational constants of NH3 were determined and used for the calculation of the absorption cross-section of NH3 at high temperatures above 590 K using the PGOPHER software. The investigated UV spectra covered the range of wavelengths from 190 nm to 230 nm, where spectral structures of the [Formula: see text] transition of NH3 in the umbrella bending mode, v2, were recognized. The absorption cross-section was found to decrease at higher temperatures. For example, the absorption cross-section peak of the (6, 0) vibrational band of NH3 decreases from ∼2 × 10−17 to ∼0.5 × 10−17 cm2/molecule with the increase of temperature from 295 K to 1570 K. Using the obtained absorption cross-section, in situ nonintrusive quantification of NH3 in different hot gas environments was achieved with a detection limit varying from below 10 parts per million (ppm) to around 200 ppm as temperature increased from 295 K to 1570 K. The quantitative measurement was applied to an experimental investigation of NH3 combustion process. The concentrations of NH3 and nitric oxide (NO) in the post flame zone of NH3–methane (CH4)–air premixed flames at different equivalence ratios were measured.


Sign in / Sign up

Export Citation Format

Share Document