scholarly journals In silico screening of antiviral compounds from Moringa oleifera for inhibition of SARS-CoV-2 main protease

Author(s):  
Bala Mohan Sivani ◽  
Priyanka Venkatesh ◽  
T.P.Krishna Murthy ◽  
S.Birendra Kumar
2021 ◽  
Vol 9 (Spl-2-ICOPMES_2020) ◽  
pp. S208-S214
Author(s):  
Novi Yantih ◽  
◽  
Uthami Syabillawati ◽  
Esti Mulatsari ◽  
Wahono Sumaryono ◽  
...  

Diseases caused by the coronavirus have become an important concern in early 2020. The coronavirus is a new type of virus that is included in the SARS-CoV-2 group. One of the possible mechanisms of SARS-CoV-2 inhibition involves protease receptors inhibition. This research was aimed to in silico screening of Ziziphus spina-christi (L.) Desf., and Strychnos ligustrine active ingredients as the main protease inhibitors of SARS-CoV-2 by assessing the ligand-binding affinity in the binding pocket of SARS-CoV-2 main protease protein. The molecular docking method is generally used to predict the inhibitory site and bonds formation. In the current study, some generally used antiviral compounds from the PDB (Protein Data Bank) were also used to compare the affinity strength of the test compound against the protease receptor (code of 5R7Y). The inhibitory activity against the main protease receptor proven by the ChemPLP score is more negative than the receptor’s native ligand and the comparison compounds. Jubanine B, a compound of Z. spina-christi has the most robust inhibition activity on the SARS-CoV-2 protease receptor. Results of this study can be concluded that this can be used to develop as a candidate for traditional medicine against SARS-CoV-2 but still it required some more in vitro and in vivo studies.


Author(s):  
Brahmaiah Pendyala ◽  
Ankit Patras

<p>As novel corona virus (COVID-19) infections has spread throughout the world, world health organization (WHO) has announced COVID-19 as a pandemic infection. Henceforth investigators are conducting extensive research to find possible therapeutic agents against COVID-19. Main protease (Mpro) that plays an essential role in processing the polyproteins that are translated from the 2019-nCOV RNA and RNA-dependent RNA polymerase (RdRp) that catalyzes the replication of RNA from RNA template becomes as a potential targets for in silico screening of effective therapeutic compounds to COVID-19. In this study we used COVID-19 Docking Server to predict potential food bioactive compounds to inhibit Mpro and RdRp. The results showed that Phycocyanobilin, Riboflavin, Cyanidin, Daidzein, Genistein are potent inhibitor bioactive compounds to Mpro and RdRp in comparison to antiviral drugs. Though, further in vitro and/or in vivo research is required to validate the docking results. <br></p>


2020 ◽  
Author(s):  
Nguyen Minh Tam ◽  
Pham Cam Nam ◽  
Duong Tuan Quang ◽  
Nguyen Thanh Tung ◽  
Van Vu ◽  
...  

<div> <p>SARS-CoV-2 rapidly infects millions of people worldwide since December 2019. There is still no effective treatment for the virus, resulting in the death of more than one million of patients. Inhibiting the activity of SARS-CoV-2 main protease (Mpro), 3C-like protease (3CLP), is able to block the viral replication and proliferation. In this context, our study has revealed that in silico screening for inhibitors of SARS-CoV-2 Mpro can be reliably done using the monomeric structure of the Mpro instead of the dimeric one. Docking and fast pulling of ligand (FPL) simulations for both monomeric and dimeric forms correlate well with the corresponding experimental binding affinity data of 30 compounds. The obtained results were also confirmed via binding pose and noncovalent contact analyses. Our study results show that it is possible to speed up computer-aided drug design for SARS-CoV-2 Mpro by focusing on the monomeric form instead of the larger dimeric one.</p></div>


2020 ◽  
Vol 27 (10) ◽  
pp. 2674-2682
Author(s):  
Arun Bahadur Gurung ◽  
Mohammad Ajmal Ali ◽  
Joongku Lee ◽  
Mohammad Abul Farah ◽  
Khalid Mashay Al-Anazi

2020 ◽  
Author(s):  
Lucas S. Franco ◽  
Rodolfo C. Maia ◽  
Eliezer J. Barreiro

A SARS-CoV-2 main protease (MPRO) inhibitor was discovered employing molecular docking and a fragment-based pharmacophore model as virtual screening strategies.


Author(s):  
Brahmaiah Pendyala ◽  
Ankit Patras

<p>As novel corona virus (COVID-19) infections has spread throughout the world, world health organization (WHO) has announced COVID-19 as a pandemic infection. Henceforth investigators are conducting extensive research to find possible therapeutic agents against COVID-19. Main protease (Mpro) that plays an essential role in processing the polyproteins that are translated from the 2019-nCOV RNA and RNA-dependent RNA polymerase (RdRp) that catalyzes the replication of RNA from RNA template becomes as a potential targets for in silico screening of effective therapeutic compounds to COVID-19. In this study we used COVID-19 Docking Server to predict potential food bioactive compounds to inhibit Mpro and RdRp. The results showed that Phycocyanobilin, Riboflavin, Cyanidin, Daidzein, Genistein are potent inhibitor bioactive compounds to Mpro and RdRp in comparison to antiviral drugs. Though, further in vitro and/or in vivo research is required to validate the docking results. <br></p>


Author(s):  
Brahmaiah Pendyala ◽  
Ankit Patras

<p>As novel corona virus (COVID-19) infections has spread throughout the world, world health organization (WHO) has announced COVID-19 as a pandemic infection. Henceforth investigators are conducting extensive research to find possible therapeutic agents against COVID-19. Main protease (Mpro) that plays an essential role in processing the polyproteins that are translated from the COVID-19 RNA becomes and RNA-dependent RNA polymerase (RdRp) that catalyzes the replication of RNA from RNA template as a potential targets for in silico screening of effective therapeutic compounds to COVID-19. In this study we used COVID-19 Docking Server to predict potential food bioactive compounds to inhibit Mpro and RdRp. The results showed that Phycocyanobilin, Riboflavin, Cyanidin, Daidzein, Genistein are potent inhibitor bioactive compounds to Mpro and RdRp in comparison to antiviral drugs. Though, further in vitro and/or in vivo research is required to validate the docking results. <br></p>


Sign in / Sign up

Export Citation Format

Share Document