Shear-layer acoustic radiation in an excited subsonic jet: models for vortex pairing and superdirective noise

2005 ◽  
Vol 333 (10) ◽  
pp. 754-761 ◽  
Author(s):  
Vincent Fleury ◽  
Christophe Bailly ◽  
Daniel Juvé
2005 ◽  
Vol 333 (10) ◽  
pp. 746-753 ◽  
Author(s):  
Vincent Fleury ◽  
Christophe Bailly ◽  
Daniel Juvé

Author(s):  
N. Hardisty

SummaryThe propagation of sound in a subsonic jet separated by two vortex sheets from two semi-infinite still media is considered and it is found that instability waves arise at particular points on the vortex sheets and that their effect is confined to certain regions.


2009 ◽  
Vol 131 (2) ◽  
Author(s):  
Brian R. McAuliffe ◽  
Metin I. Yaras

Through experiments using two-dimensional particle-image velocimetry (PIV), this paper examines the nature of transition in a separation bubble and manipulations of the resultant breakdown to turbulence through passive means of control. An airfoil was used that provides minimal variation in the separation location over a wide operating range, with various two-dimensional modifications made to the surface for the purpose of manipulating the transition process. The study was conducted under low-freestream-turbulence conditions over a flow Reynolds number range of 28,000–101,000 based on airfoil chord. The spatial nature of the measurements has allowed identification of the dominant flow structures associated with transition in the separated shear layer and the manipulations introduced by the surface modifications. The Kelvin–Helmholtz (K-H) instability is identified as the dominant transition mechanism in the separated shear layer, leading to the roll-up of spanwise vorticity and subsequent breakdown into small-scale turbulence. Similarities with planar free-shear layers are noted, including the frequency of maximum amplification rate for the K-H instability and the vortex-pairing phenomenon initiated by a subharmonic instability. In some cases, secondary pairing events are observed and result in a laminar intervortex region consisting of freestream fluid entrained toward the surface due to the strong circulation of the large-scale vortices. Results of the surface-modification study show that different physical mechanisms can be manipulated to affect the separation, transition, and reattachment processes over the airfoil. These manipulations are also shown to affect the boundary-layer losses observed downstream of reattachment, with all surface-indentation configurations providing decreased losses at the three lowest Reynolds numbers and three of the five configurations providing decreased losses at the highest Reynolds number. The primary mechanisms that provide these manipulations include: suppression of the vortex-pairing phenomenon, which reduces both the shear-layer thickness and the levels of small-scale turbulence; the promotion of smaller-scale turbulence, resulting from the disturbances generated upstream of separation, which provides quicker transition and shorter separation bubbles; the elimination of the separation bubble with transition occurring in an attached boundary layer; and physical disturbance, downstream of separation, of the growing instability waves to manipulate the vortical structures and cause quicker reattachment.


1988 ◽  
Vol 31 (12) ◽  
pp. 3804 ◽  
Author(s):  
H. T. Moon ◽  
P. D. Weidman

1978 ◽  
Vol 87 (2) ◽  
pp. 349-383 ◽  
Author(s):  
A. K. M. F. Hussain ◽  
K. B. M. Q. Zaman

Free shear layer stability measurements with a hot wire revealed that the probe itself can trigger and sustain upstream instability modes like the slit jet-wedge edge tones. The flow fields associated with the free shear layer tones induced in axisym-metric and plane air shear layers by a hot-wire probe and by a plane wedge were then explored experimentally, and found to be different in many ways from the widely investigated jet edge tone phenomenon.As many as four frequency stages have been identified, there being a fifth stage associated with the subharmonic attributed to vortex pairing in the free shear layer. No evidence of hysteresis could be found in the shear layer tone. In the interstage jump (i.e. bimodal) regions, the tone occurred in only one mode at a time while intermittently switching from one to the other. Frequency variations in each stage are shown to collapse on a single curve when non-dimensionalized with the initial momentum thickness θeor with the lip-wedge distanceh, and plotted as a function ofh/θe.Phase average measurements locked onto the tone fundamental show that the phase velocity and wavelength of the tone-induced velocity fluctuation are essentially independent of the stage of tone generation; in each stage, both phase velocity and wavelength decrease with increasing frequency but undergo jumps at starts of new stages. The measured amplitude and phase profiles, as well as the variations of the shear tone wavenumber and phase velocity with the Strouhal number, show reasonable agreement with the predictions of the spatial stability theory. The wavelength λ bears a unique relation toh, thish, δ relation being different from the Brown-Curle equation for the jet edge tone.Shear layer tones would be typically induced in near-field shear layer measurements involving invasive probes, and can produce misleading results. A method for determining the true free shear layer natural instability frequency is recommended.


2006 ◽  
Vol 129 (1) ◽  
pp. 91-99 ◽  
Author(s):  
R. D. Gillgrist ◽  
D. J. Forliti ◽  
P. J. Strykowski

Suction was applied asymmetrically to the exhaust of a rectangular subsonic jet creating a pressure field capable of vectoring the primary flow at angles up to 15deg. The suction simultaneously creates low pressures near the jet exhaust and conditions capable of drawing a secondary flow along the jet shear layer in the direction opposite to the primary jet. This countercurrent shear layer is affected both by the magnitude of the suction source as well as the proximity of an adjacent surface onto which the pressure forces act to achieve vectoring. This confined countercurrent flow gives rise to elevated turbulence levels in the jet shear layer as well as considerable increases in the gradients of the turbulent stresses. The turbulent stresses are responsible for producing a pressure field conducive for vectoring the jet at considerably reduced levels of secondary mass flow than would be possible in their absence.


Sign in / Sign up

Export Citation Format

Share Document