scholarly journals A microscale finite element model for joining of metals by large plastic deformations

2018 ◽  
Vol 346 (8) ◽  
pp. 743-755 ◽  
Author(s):  
Kavan Khaledi ◽  
Shahed Rezaei ◽  
Stephan Wulfinghoff ◽  
Stefanie Reese
2019 ◽  
Vol 7 (2) ◽  
pp. 10-14
Author(s):  
Галина Кравченко ◽  
Galina Kravchenko ◽  
Елена Труфанова ◽  
Elena Trufanova ◽  
Юлия Боженкова ◽  
...  

The study of the membrane coating of large-span structures is carried out. Five stages of installation and operation of the coating are considered. The uneven snow pressure on the coating was calculated and applied to the finite element model of the structure. Based on the results, the authors also provide conclusions and summary about the considered structure. Two options of emergency cases have been investigated. The results showed that the support contour is a key element of the structure. The failure of any element, connection except of the support contour does not lead to plastic deformations in the coating.


2011 ◽  
Vol 2 (3) ◽  
pp. 416-423
Author(s):  
K. De Keyser ◽  
F. Van Acker ◽  
Stijn Hertelé ◽  
Matthias Verstraete ◽  
Wim De Waele ◽  
...  

To investigate the influence of global plastic deformations on girth weld defect tolerance inpipelines, a parametric finite element model has been developed. This paper provides an experimentalvalidation of the model. It describes the test setup and instrumentation used for the evaluation of plasticstrain fields around a notch in a tension loaded non-welded X65 mini wide plate. LVDT measurements anddigital image correlation (DIC) results are compared to each other and to the results of finite elementsimulations. Whereas some deviation is observed owing to unavoidable experimental uncertainties andlimitations of finite element modelling, the overall correspondence is more than satisfying.


Author(s):  
Jing Liu ◽  
Zhifeng Shi ◽  
Yimin Shao ◽  
Huifang Xiao

A clear understanding of the plastic deformations at the spall edges is a primary task for the edge propagation predictions in rolling element bearings. This work proposed an elastic–plastic two-dimensional finite element model for calculating the contact stress and plastic deformation between the rolling element and raceway. This model includes a rolling element and one raceway. The rectangular plane strain solid elements are used to formulate the finite element model. The Coulomb model is used to formulate the friction force between the rolling element and raceway. A bilinear kinematic hardening material model is used in the finite element model, which can formulate the elastic–plastic deformations. The studied spall edge profiles are assumed to be sharp and cylindrical ones. To validate the finite element model, the contact deformations between the rolling element and the raceway from the proposed model and Hertzian contact theory are compared. Effects of spall edge profiles on the edge plastic deformations at the edge are analyzed, as well as the edge plastic deformation zone width. Based on the numerical results, the relationship between the edge plastic deformation and the spall edge profile, and that between the edge plastic deformation zone width and the spall edge profile are established. The results show that the edge plastic deformation is significantly influenced by the spall edge profiles, as well as the edge plastic deformation zone width. This paper provides a clear understanding of the effects of the edge profiles on the plastic deformations and propagation at the spall edge.


1989 ◽  
Vol 17 (4) ◽  
pp. 305-325 ◽  
Author(s):  
N. T. Tseng ◽  
R. G. Pelle ◽  
J. P. Chang

Abstract A finite element model was developed to simulate the tire-rim interface. Elastomers were modeled by nonlinear incompressible elements, whereas plies were simulated by cord-rubber composite elements. Gap elements were used to simulate the opening between tire and rim at zero inflation pressure. This opening closed when the inflation pressure was increased gradually. The predicted distribution of contact pressure at the tire-rim interface agreed very well with the available experimental measurements. Several variations of the tire-rim interference fit were analyzed.


1996 ◽  
Vol 24 (4) ◽  
pp. 339-348 ◽  
Author(s):  
R. M. V. Pidaparti

Abstract A three-dimensional (3D) beam finite element model was developed to investigate the torsional stiffness of a twisted steel-reinforced cord-rubber belt structure. The present 3D beam element takes into account the coupled extension, bending, and twisting deformations characteristic of the complex behavior of cord-rubber composite structures. The extension-twisting coupling due to the twisted nature of the cords was also considered in the finite element model. The results of torsional stiffness obtained from the finite element analysis for twisted cords and the two-ply steel cord-rubber belt structure are compared to the experimental data and other alternate solutions available in the literature. The effects of cord orientation, anisotropy, and rubber core surrounding the twisted cords on the torsional stiffness properties are presented and discussed.


Sign in / Sign up

Export Citation Format

Share Document