Predicting potential winter wheat yield losses caused by multiple disease systems and climatic conditions

2017 ◽  
Vol 99 ◽  
pp. 17-25 ◽  
Author(s):  
Radivoje Jevtić ◽  
Vesna Župunski ◽  
Mirjana Lalošević ◽  
Ljubica Župunski
2021 ◽  
Vol 16 (1) ◽  
pp. 117-127
Author(s):  
S. N. Volkov ◽  
S. V. Savinova ◽  
E. V. Cherkashina ◽  
D. A Shapovalov ◽  
V. V. Bratkov ◽  
...  

Аim. Assessment of current climate changes in the territory of Ciscaucasia in order to predict the yield of winter wheat.Methods .Integral indicators of climatic conditions for agricultural production were employed. For the investigations, we selected five‐year periods for which the meteorological parameters were averaged, and to identify trends the data of specific five‐year periods were compared with the average value for the entireseries of observations (1960‐2020).Results. The deviation of precipitation in April was highest in 2011‐2015, when it increased by 22 mm, and in 1986‐1990 and 1991‐1995, when it decreased by 15 and 10 mm respectively. In Eastern Ciscaucasia,where conditions are more arid than in the Western and Central regions, in both the rise in air temperature and the amount of precipitation, especially in April and May, increased in the 21stcentury for the entire period of active vegetation.Conclusion.It was established that the value of the hydrothermal coefficient practically did not change during the 1960‐2020 period. In the late 1990s and early 2000s, there was an increase in productivity against the background of a relatively high level of annual precipitation and this stability is confirmed at the present time. There is a very close relationship between natural and climatic factors and the level of winter wheat yield.


2011 ◽  
Vol 25 (1) ◽  
pp. 51-57 ◽  
Author(s):  
Andrew R. Kniss ◽  
Drew J. Lyon

Field studies were conducted in Wyoming and Nebraska in 2007 through 2009 to evaluate winter wheat response to aminocyclopyrachlor. Aminocyclopyrachlor was applied at rates between 15 and 120 g ai ha−1 6, 4, and 2 mo before winter wheat planting (MBP). Redroot pigweed control was 90% with aminocyclopyrachlor rates of 111 and 50 g ha−1 when applied 4 or 2 MBP. Aminocyclopyrachlor at 37 g ha−1 controlled Russian thistle 90% when applied 6 MBP. At Sidney, NE, winter wheat yield loss was > 10% at all aminocyclopyrachlor rates when applied 2 or 4 MBP, and at all rates > 15 g ha−1 when applied 6 MBP. At Lingle, WY, > 40% winter wheat yield loss was observed at all rates when averaged over application timings. Although the maturing wheat plants looked normal, few seed were produced in the aminocyclopyrachlor treatments, and therefore preharvest wheat injury ratings of only 5% corresponded to yield losses ranging from 23 to 90%, depending on location. The high potential for winter wheat crop injury will almost certainly preclude the use of aminocyclopyrachlor in the fallow period immediately preceding winter wheat.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Yuanyuan Chen ◽  
Jingfeng Huang ◽  
Xiaodong Song ◽  
Ping Gao ◽  
Suqin Wan ◽  
...  

The waterlogging is a serious agrometeorological disaster caused by excessive soil water during crop growth stages. The middle and lower reaches of the Yangtze River are one of the major winter wheat growing regions in China and at the same time they are waterlogging-prone due to their specific climatic conditions. In this study, we integrated a set of tools to analyze the spatiotemporal features of winter wheat waterlogging in this region. We proposed a waterlogging precipitation index (WPI) based on winter wheat yield loss rate and precipitation anomaly percentage and analyzed the frequency, scope, and intensity of winter wheat waterlogging. The results showed that the spring rainfall had a direct and significant effect on winter wheat yield, and the meteorological yield of winter wheat was negatively correlated with precipitation abnormal event from jointing to maturity stages (March to May) across the whole study area. The matching between the waterlogging severity identified by the WPI and historical winter wheat waterlogging records was relatively high. We also discussed the influences of the other nonmeteorological factors, for example, soil texture, topographic and geomorphic conditions, and local disaster-resisting ability, on the extent of waterlogging damage.


2016 ◽  
Vol 164 (9) ◽  
pp. 671-677 ◽  
Author(s):  
Ram C. Sharma ◽  
Kumarse Nazari ◽  
Amir Amanov ◽  
Zafar Ziyaev ◽  
Anwar U. Jalilov

2005 ◽  
Vol 34 (2) ◽  
pp. 177-185 ◽  
Author(s):  
Zs. Szentpétery ◽  
Cs. Kleinheincz ◽  
G. Szöllősi ◽  
M. Jolánkai

Sign in / Sign up

Export Citation Format

Share Document