Impact of planetary ball milling parameters on the microstructure and pinning properties of polycrystalline superconductor Y3Ba5Cu8Oy

Cryogenics ◽  
2018 ◽  
Vol 92 ◽  
pp. 5-12 ◽  
Author(s):  
Y. Slimani ◽  
E. Hannachi ◽  
F. Ben Azzouz ◽  
M. Ben Salem
Metals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 876
Author(s):  
Christian Bernauer ◽  
Sandra Grohmann ◽  
Philipp Angermann ◽  
Daniel Dickes ◽  
Florian Holzberger ◽  
...  

Reactive particles consisting of nickel and aluminum represent an adaptable heat source for joining applications, since each individual particle is capable of undergoing a self-sustaining exothermic reaction. Of particular interest are particles with intrinsic lamellar microstructures, as they provide large contact areas between the reactants nickel and aluminum. In this work, the exothermic reaction as well as the microstructure of such lamellar reactive particles produced by high energy planetary ball milling were investigated. Based on statistically designed experiments regarding the milling parameters, the heat of reaction was examined by means of differential scanning calorimetry (DSC). A statistical model was derived from the results to predict the heat of reaction as a function of the milling parameters used. This model can be applied to adjust the heat of reaction of the reactive particles depending on the thermal properties of the joining partners. The fabricated microstructures were evaluated by means of scanning electron microscopy (SEM). Through the development of a dedicated SEM image evaluation algorithm, a computational quantification of the contact area between nickel and aluminum was enabled for the first time. A weak correlation between the contact area and the heat of reaction could be demonstrated. It is assumed that the quantification of the contact areas can be further improved by a higher number of SEM images per sample. The findings obtained provide an essential contribution to enable reactive particles as a tailored heat source for joining applications.


2019 ◽  
Vol 822 ◽  
pp. 244-251
Author(s):  
Vitalii Galkin ◽  
Kamran Haider ◽  
Jong Bin Ahn ◽  
Dong Soo Kim

Nd2Fe14B particles were obtained from mixture of neodymium oxide, iron oxide, boric acid and CaH2 by reduction-diffusion process. Two different washing processes were used for the separation of magnetic particles from Ca and CaO matrix: usual washing with water and planetary ball milling process in ethanol media. Nd2Fe14BHx hydrogenated state was formed after usual washing with water. Ethanol planetary ball milling washing procedure prevented the formation of Nd2Fe14B hydrides during washing. Variation of milling parameters allowed producing particles with different morphology such as spherical or flakes after planetary ball milling washing process. Influence of milling parameters on magnetic properties of Nd2Fe14B powder was investigated.


2021 ◽  
Vol 1825 (1) ◽  
pp. 012070
Author(s):  
Zulkarnain Jalil ◽  
Eva Novita Sari ◽  
Ismail Ismail ◽  
Muhammad ◽  
M. Nizar Machmud ◽  
...  

2010 ◽  
Vol 660-661 ◽  
pp. 329-334 ◽  
Author(s):  
Railson Bolsoni Falcão ◽  
Edgar Djalma Campos Carneiro Dammann ◽  
Cláudio José da Rocha ◽  
Ricardo Mendes Leal Neto

This work reports the efforts to obtain TiFe intermetallic compound by high-energy ball milling of Ti and Fe powder mixtures. This process route has been used to provide a better hydrogen intake in this compound. Milling was carried out in a SPEX mill at different times. Strong adherence of material at the vial walls was seen to be the main problem at milling times higher than 1 hour. Attempts to solve this problem were accomplished by adding different process control agents, like ethanol, stearic acid, low density polyethylene, benzene and cyclohexane at variable quantities and keeping constant other milling parameters like ball to powder ration and balls size. Better results were attained with benzene and cyclohexane, but with partial formation of TiFe compound even after a heat treatment (annealing) of the milled samples.


RSC Advances ◽  
2016 ◽  
Vol 6 (15) ◽  
pp. 12657-12668 ◽  
Author(s):  
Pranita Dash ◽  
Tapan Dash ◽  
Tapan Kumar Rout ◽  
Ashok Kumar Sahu ◽  
Surendra Kumar Biswal ◽  
...  

Graphene oxides (GO) with different degrees of oxidation have been prepared by an in-house designed horizontal high energy planetary ball milling process.


Sign in / Sign up

Export Citation Format

Share Document