scholarly journals Advanced Biokinetic And Hydrodynamic Modelling To Support And Optimize The Design Of Full-Scale High Rate Algal Ponds

Author(s):  
A. Ortiz ◽  
R. Díez-Montero ◽  
J. García ◽  
N. Khalil ◽  
E. Uggetti
1990 ◽  
Vol 22 (7-8) ◽  
pp. 35-43
Author(s):  
K. D. Tracy ◽  
S. N. Hong

The anaerobic selector of the A/0™ process offers many advantages over conventional activated sludge processes with respect to process performance and operational stability. This high-rate, single-sludge process has been successfully demonstrated in full-scale operations for biological phosphorus removal and total nitrogen control in addition to BOD and TSS removal. This process can be easily utilized in upgrading existing treatment plants to meet stringent discharge limitations and to provide capacity expansion. Upgrades of two full-scale installations are described and performance data from the two facilities are presented.


2000 ◽  
Vol 42 (10-11) ◽  
pp. 371-374 ◽  
Author(s):  
S. Araki ◽  
J. M. González ◽  
E. de Luis ◽  
E. Bécares

The viability of Parascaris equorum eggs was studied in two experimental pilot-scale high-rate algal ponds (HRAPs) working in parallel with 4 and 10 days hydraulic retention time respectively. Semi-permeable bags of cellulose (15000 daltons pore size) were used to study the effect of physico-chemical conditions on the survival of these helminth eggs. Three thousand eggs were used in each bag. Replicates of these bags were submerged for 4 and 10 days in the HRAPs and egg viability was compared with that in control bags submerged in sterile water. After 4 days exposure, 60% reduction in viability was achieved, reaching 90% after 10 days, much higher than the 16% and 25% found in the control bags for 4 and 10 days respectively. Ionic conditions of the HRAP may have been responsible for up to 50–60% of the egg mortality, suggesting that mortality due to the ionic environment could be more important than physical retention and other potential removal factors.


2015 ◽  
Vol 184 ◽  
pp. 202-214 ◽  
Author(s):  
Abbas Mehrabadi ◽  
Rupert Craggs ◽  
Mohammed M. Farid

2015 ◽  
Vol 184 ◽  
pp. 222-229 ◽  
Author(s):  
Donna L. Sutherland ◽  
Clive Howard-Williams ◽  
Matthew H. Turnbull ◽  
Paul A. Broady ◽  
Rupert J. Craggs

2003 ◽  
Vol 48 (2) ◽  
pp. 277-281 ◽  
Author(s):  
H. El Ouarghi ◽  
E. Praet ◽  
H. Jupsin ◽  
J.-L. Vasel

We previously suggested a method to characterize the oxygen balance in High-Rate Algal Ponds (HRAPs). The method was based on a hydrodynamic study of the reactor combined with a tracer gas method to measure the oxygen transfer coefficient. From such a method diurnal variations of photosynthesis and respiration can be quantified and the net oxygen production rate determined. In this paper we propose a similar approach to obtain carbon dioxide balances in HRAPs. Then oxygen and carbon dioxide balances can be compared.


2011 ◽  
Vol 63 (4) ◽  
pp. 660-665 ◽  
Author(s):  
R. J. Craggs ◽  
S. Heubeck ◽  
T. J. Lundquist ◽  
J. R. Benemann

This paper examines the potential of algae biofuel production in conjunction with wastewater treatment. Current technology for algal wastewater treatment uses facultative ponds, however, these ponds have low productivity (∼10 tonnes/ha.y), are not amenable to cultivating single algal species, require chemical flocculation or other expensive processes for algal harvest, and do not provide consistent nutrient removal. Shallow, paddlewheel-mixed high rate algal ponds (HRAPs) have much higher productivities (∼30 tonnes/ha.y) and promote bioflocculation settling which may provide low-cost algal harvest. Moreover, HRAP algae are carbon-limited and daytime addition of CO2 has, under suitable climatic conditions, the potential to double production (to ∼60 tonnes/ha.y), improve bioflocculation algal harvest, and enhance wastewater nutrient removal. Algae biofuels (e.g. biogas, ethanol, biodiesel and crude bio-oil), could be produced from the algae harvested from wastewater HRAPs, The wastewater treatment function would cover the capital and operation costs of algal production, with biofuel and recovered nutrient fertilizer being by-products. Greenhouse gas abatement results from both the production of the biofuels and the savings in energy consumption compared to electromechanical treatment processes. However, to achieve these benefits, further research is required, particularly the large-scale demonstration of wastewater treatment HRAP algal production and harvest.


2017 ◽  
Vol 601-602 ◽  
pp. 646-657 ◽  
Author(s):  
Alessandro Solimeno ◽  
Lauren Parker ◽  
Tryg Lundquist ◽  
Joan García

Sign in / Sign up

Export Citation Format

Share Document