scholarly journals Assessing the influence of fuel geometrical shape on fire dynamics simulator (FDS) predictions for a large-scale heavy goods vehicle tunnel fire experiment

2016 ◽  
Vol 5 ◽  
pp. 34-41 ◽  
Author(s):  
Xiaoyun Wang ◽  
Charles Fleischmann ◽  
Michael Spearpoint
2014 ◽  
Vol 955-959 ◽  
pp. 1840-1849
Author(s):  
Cherng Shing Lin ◽  
Kuo Da Chou

Taiwan is an island nation with numerous mountains and few plains. Consequently, the number of tunnel projects has gradually increased and tunnels are becoming longer. Because the number of large tunnels that exceed 1000 meters in length has increased, the effective escape and evacuation of people during a fire and the minimization of injury are crucial to fire protection engineers. For this study, an actual example of a fire that occurred in Hsuehshan Tunnel (12.9 kilometers and the longest tunnel in Southeast Asia) was used. A fire dynamics simulator (FDS) including numerical simulation software was applied to analyze this fire and the relevant information that was collected was compared and verified. The fire site simulation showed the escape and evacuation of people during the fire. Simulations of the original fire site and the possible escape time for people with various attributes were discussed to provide quantitative data and recommendations based on the analysis results, which can serve as a reference for fire protection engineering.


2021 ◽  
Author(s):  
Egle Rackauskaite ◽  
Matthew Bonner ◽  
Francesco Restuccia ◽  
Nieves Fernandez Anez ◽  
Eirik G. Christensen ◽  
...  

AbstractThe traditional design fires commonly considered in structural fire engineering, like the standard fire and Eurocode parametric fires, were developed several decades ago based on experimental compartments smaller than 100 m2 in floor area. These experiments led to the inherent assumption of flashover in design fires and that the temperatures and burning conditions are uniform in the whole of the compartment, regardless of its size. However, modern office buildings often have much larger open-plan floor areas (e.g. the Shard in London has a floor area of 1600 m2) where non-uniform fire conditions are likely to occur. This paper presents observations from a large-scale fire experiment x-ONE conducted inside a concrete farm building in Poland. The objective of x-ONE was to capture experimentally a natural fire inside a large and open plan compartment. With an open-plan floor area of 380 m2, x-ONE is the largest compartment fire experiment carried out to date. The fire was ignited at one end of the compartment and allowed to spread across a continuous wood crib (fuel load ~ 370 MJ/m2). A travelling fire with clear leading and trailing edges was observed spreading along 29 m of the compartment length. The flame spread rate was not constant but accelerated with time from 3 mm/s to 167 mm/s resulting in a gradually changing fire size. The fire travelled across the compartment and burned out at the far end 25 min after ignition. Flashover was not observed. The thermocouples and cameras installed along the fire path show clear near-field and far-field regions, indicating highly non-uniform spatial temperatures and burning within the compartment. The fire dynamics observed during this experiment are completely different to the fire dynamics reported in small scale compartments in previous literature and to the assumptions made in traditional design fires for structural design. This highlights the need for further research and experiments in large compartments to understand the fire dynamics and continue improving the safe design of modern buildings.


2020 ◽  
Vol 194 ◽  
pp. 05061
Author(s):  
GENG Pengqiang ◽  
WANG Zihao ◽  
WENG Miaocheng ◽  
LIU Fang

.This paper uses Fire Dynamics Simulator (FDS) to study the effect of the longitudinal distance from the shaft to the fire source on the natural smoke exhaust of the tunnel fire with one closed portal, and analyzes the temperature distribution of the smoke and the shaft’s smoke exhaust efficiency. The results show that when the shaft is located downstream of the fire source (Ds<0), with the increase of the distance from the shaft to the fire source, the smoke exhaust efficiency decreases first and then stabilizes at a fixed value. At this time, the ceiling temperature attenuation’s coefficient at upstream of the fire source is only related to the heat release rate of the fire source (HRR). When the shaft is located upstream of the fire source (Ds>0), the smoke exhaust efficiency increases slightly with the increase of the distance from the shaft to the fire source, but the overall value is relatively small. When HRR is fixed, the shaft located downstream of the fire source has a higher smoke exhaust efficiency. As the distance between the shaft and the fire source increases, the plug phenomenon decreases.


2001 ◽  
Author(s):  
Kevin McGrattan ◽  
Jason Floyd ◽  
Simo Hostikka

Abstract A numerical fire model, Fire Dynamics Simulator (FDS), is being developed at NIST to study fire behavior and to evaluate the performance of fire protection systems in buildings. To date, about half of the applications of the model have been for design of smoke handling systems and sprinkler/detector activation studies. The other half consists of residential and industrial fire reconstructions. Improvements are being made to address the second set of applications, most importantly a mixture fraction combustion model and a finite volume radiation transport algorithm using either a gray gas or a wide band assumption. The methods will be discussed and a sample calculation presented.


Author(s):  
Christoph Schwörer ◽  
Erika Gobet ◽  
Jacqueline F. N. van Leeuwen ◽  
Sarah Bögli ◽  
Rachel Imboden ◽  
...  

AbstractObserving natural vegetation dynamics over the entire Holocene is difficult in Central Europe, due to pervasive and increasing human disturbance since the Neolithic. One strategy to minimize this limitation is to select a study site in an area that is marginal for agricultural activity. Here, we present a new sediment record from Lake Svityaz in northwestern Ukraine. We have reconstructed regional and local vegetation and fire dynamics since the Late Glacial using pollen, spores, macrofossils and charcoal. Boreal forest composed of Pinus sylvestris and Betula with continental Larix decidua and Pinus cembra established in the region around 13,450 cal bp, replacing an open, steppic landscape. The first temperate tree to expand was Ulmus at 11,800 cal bp, followed by Quercus, Fraxinus excelsior, Tilia and Corylus ca. 1,000 years later. Fire activity was highest during the Early Holocene, when summer solar insolation reached its maximum. Carpinus betulus and Fagus sylvatica established at ca. 6,000 cal bp, coinciding with the first indicators of agricultural activity in the region and a transient climatic shift to cooler and moister conditions. Human impact on the vegetation remained initially very low, only increasing during the Bronze Age, at ca. 3,400 cal bp. Large-scale forest openings and the establishment of the present-day cultural landscape occurred only during the past 500 years. The persistence of highly diverse mixed forest under absent or low anthropogenic disturbance until the Early Middle Ages corroborates the role of human impact in the impoverishment of temperate forests elsewhere in Central Europe. The preservation or reestablishment of such diverse forests may mitigate future climate change impacts, specifically by lowering fire risk under warmer and drier conditions.


Sign in / Sign up

Export Citation Format

Share Document