Network Application Programming Interface over Session Initiation Protocol, a novel approach to the global roaming environment

2009 ◽  
Vol 31 (2) ◽  
pp. 406-419 ◽  
Author(s):  
Tzu-Chi Huang ◽  
Ce-Kuen Shieh ◽  
Bo-Yang Lai ◽  
Yu-Ben Miao
Author(s):  
Di Wu ◽  
Xiao-Yuan Jing ◽  
Haowen Chen ◽  
Xiaohui Kong ◽  
Jifeng Xuan

Application Programming Interface (API) tutorial is an important API learning resource. To help developers learn APIs, an API tutorial is often split into a number of consecutive units that describe the same topic (i.e. tutorial fragment). We regard a tutorial fragment explaining an API as a relevant fragment of the API. Automatically recommending relevant tutorial fragments can help developers learn how to use an API. However, existing approaches often employ supervised or unsupervised manner to recommend relevant fragments, which suffers from much manual annotation effort or inaccurate recommended results. Furthermore, these approaches only support developers to input exact API names. In practice, developers often do not know which APIs to use so that they are more likely to use natural language to describe API-related questions. In this paper, we propose a novel approach, called Tutorial Fragment Recommendation (TuFraRec), to effectively recommend relevant tutorial fragments for API-related natural language questions, without much manual annotation effort. For an API tutorial, we split it into fragments and extract APIs from each fragment to build API-fragment pairs. Given a question, TuFraRec first generates several clarification APIs that are related to the question. We use clarification APIs and API-fragment pairs to construct candidate API-fragment pairs. Then, we design a semi-supervised metric learning (SML)-based model to find relevant API-fragment pairs from the candidate list, which can work well with a few labeled API-fragment pairs and a large number of unlabeled API-fragment pairs. In this way, the manual effort for labeling the relevance of API-fragment pairs can be reduced. Finally, we sort and recommend relevant API-fragment pairs based on the recommended strategy. We evaluate TuFraRec on 200 API-related natural language questions and two public tutorial datasets (Java and Android). The results demonstrate that on average TuFraRec improves NDCG@5 by 0.06 and 0.09, and improves Mean Reciprocal Rank (MRR) by 0.07 and 0.09 on two tutorial datasets as compared with the state-of-the-art approach.


2018 ◽  
Vol 9 (1) ◽  
pp. 24-31
Author(s):  
Rudianto Rudianto ◽  
Eko Budi Setiawan

Availability the Application Programming Interface (API) for third-party applications on Android devices provides an opportunity to monitor Android devices with each other. This is used to create an application that can facilitate parents in child supervision through Android devices owned. In this study, some features added to the classification of image content on Android devices related to negative content. In this case, researchers using Clarifai API. The result of this research is to produce a system which has feature, give a report of image file contained in target smartphone and can do deletion on the image file, receive browser history report and can directly visit in the application, receive a report of child location and can be directly contacted via this application. This application works well on the Android Lollipop (API Level 22). Index Terms— Application Programming Interface(API), Monitoring, Negative Content, Children, Parent.


Robotica ◽  
2021 ◽  
pp. 1-31
Author(s):  
Andrew Spielberg ◽  
Tao Du ◽  
Yuanming Hu ◽  
Daniela Rus ◽  
Wojciech Matusik

Abstract We present extensions to ChainQueen, an open source, fully differentiable material point method simulator for soft robotics. Previous work established ChainQueen as a powerful tool for inference, control, and co-design for soft robotics. We detail enhancements to ChainQueen, allowing for more efficient simulation and optimization and expressive co-optimization over material properties and geometric parameters. We package our simulator extensions in an easy-to-use, modular application programming interface (API) with predefined observation models, controllers, actuators, optimizers, and geometric processing tools, making it simple to prototype complex experiments in 50 lines or fewer. We demonstrate the power of our simulator extensions in over nine simulated experiments.


Sign in / Sign up

Export Citation Format

Share Document