scholarly journals Thermal performance enhancement of vapor chamber with modified thin screen mesh wick by laser etching

2021 ◽  
Vol 28 ◽  
pp. 101525
Author(s):  
Tengqing Liu ◽  
Wentao Yan ◽  
Wei Wu ◽  
Shuangfeng Wang
Author(s):  
Sangbeom Cho ◽  
Yogendra K. Joshi

As demands on performance for mobile electronics continue to increase, traditional packaging technology is facing its limit in number of input/outputs (I/Os) and thermal challenges. Glass interposers offer many advantages over previous packaging technology for mobile electronics, including ultra-high electrical resistivity, low loss, and lower cost at processed interposer levels. However, it has two fundamental limitations; brittleness and relatively low thermal conductivity (∼1 W/mK), compared to Si (∼150 W/mK). This paper presents a study on thermal performance enhancement of glass interposer based on thermal modeling, and compares it with silicon interposer. The model captures in-plane and out-of-plane thermal performance enhancement with copper structures incorporated in the interposer. To further study the effect of advanced cooling schemes on interposer technology, an integrated vapor chamber design is evaluated through computational modeling.


2020 ◽  
Vol 12 (1) ◽  
pp. 01016-1-01016-5
Author(s):  
A. Terfai ◽  
◽  
Y. Chiba ◽  
M. N. Bouaziz ◽  
◽  
...  

2021 ◽  
Vol 13 (13) ◽  
pp. 7025
Author(s):  
Shiva Gorjian ◽  
Behnam Hosseingholilou ◽  
Laxmikant D. Jathar ◽  
Haniyeh Samadi ◽  
Samiran Samanta ◽  
...  

The food industry is responsible for supplying the food demand of the ever-increasing global population. The food chain is one of the major contributors to greenhouse gas (GHG) emissions, and global food waste accounts for one-third of produced food. A solution to this problem is preserving crops, vegetables, and fruits with the help of an ancient method of sun drying. For drying agricultural and marine products, several types of dryers are also being developed. However, they require a large amount of energy supplied conventionally from pollutant energy sources. The environmental concerns and depletion risks of fossil fuels persuade researchers and developers to seek alternative solutions. To perform drying applications, sustainable solar power may be effective because it is highly accessible in most regions of the world. Greenhouse dryers (GHDs) are simple facilities that can provide large capacities for drying agricultural products. This study reviews the integration of GHDs with different solar technologies, including photovoltaic (PV), photovoltaic-thermal (PVT), and solar thermal collectors. Additionally, the integration of solar-assisted greenhouse dryers (SGHDs) with heat pumps and thermal energy storage (TES) units, as well as their hybrid configuration considering integration with other renewable energy sources, is investigated to improve their thermal performance. In this regard, this review presents and discusses the most recent advances in this field. Additionally, the economic analysis of SGHDs is presented as a key factor to make these sustainable facilities commercially available.


2015 ◽  
Vol 61 ◽  
pp. 130-143 ◽  
Author(s):  
Shyy Woei Chang ◽  
Kuei Feng Chiang ◽  
Tsung Han Lee

2016 ◽  
Vol 53 (1) ◽  
pp. 241-251 ◽  
Author(s):  
Bhupinder Singh Bhullar ◽  
D. Gangacharyulu ◽  
Sarit K. Das

2020 ◽  
Vol 10 (3) ◽  
pp. 5814-5818
Author(s):  
M. A. Aichouni ◽  
N. F. Alshammari ◽  
N. Ben Khedher ◽  
M. Aichouni

The intermittent nature of renewable energy sources such as solar and wind necessitates integration with energy-storage units to enable realistic applications. In this study, thermal performance enhancement of the finned Cylindrical Thermal Energy Storage (C-TES) with nano-enhanced Phase Change Material (PCM) integrated with the water heating system under Storage, Charging and Discharging (SCD) conditions were investigated experimentally. The effects of the addition of copper oxide (CuO) and aluminum oxide (Al2O3) nanoparticles in PCM on thermal conductivity, specific heat, and on charging and discharging performance rates were theoretically and experimentally investigated and studied in detail. The experimental apparatus utilized paraffin wax as PCM, which was filled in Finned C-TES to conduct the experiments. The experimental results showed a positive improvement compared with the non-nano additive PCM. The significance and originality of this project lies within the evaluation and identification of preferable metal-oxides with higher potential for improving thermal performance.


Sign in / Sign up

Export Citation Format

Share Document