scholarly journals Key issues on the exergetic analysis of H2O/LiBr absorption cooling systems

Author(s):  
Ana M. Blanco-Marigorta ◽  
J. Daniel Marcos
2005 ◽  
Vol 16 (4) ◽  
pp. 59-66 ◽  
Author(s):  
V Mittal ◽  
KS Kasana ◽  
NS Thakur

An air-conditioning system utilizing solar energy would generally be more efficient, cost wise, if it was used to provide both heating and cooling requirements in the building it serves. Various solar powered heating systems have been tested extensively, but solar powered air conditioning systems have received very little attention. Solar powered absorption cooling systems can serve both heating and cooling requirements in the building it serves. Many researchers have studied the solar absorption air conditioning system in order to make it economically and technically viable. But still, much more research in this area is needed. This paper will help many researchers working in this area and provide them with fundamental knowledge on absorption systems, and a detailed review on the past efforts in the field of solar absorption cooling systems with the absorption pair of lithium-bromide and water. This knowledge will help them to start the parametric study in order to investigate the influence of key parameters on the overall system performance.


2020 ◽  
Vol 59 (2) ◽  
pp. 707-738 ◽  
Author(s):  
Rasoul Nikbakhti ◽  
Xiaolin Wang ◽  
Ahmed Kadhim Hussein ◽  
Aghil Iranmanesh

Author(s):  
Joy Nondy ◽  
Tapan Kr. Gogoi

Abstract In this paper, a combined power and cooling system is thermodynamically analyzed. The system consists of a natural gas-fired gas turbine (GT) plant integrated with a heat recovery steam generator (HRSG), two steam turbines (STs), one organic Rankine cycle (ORC) and two absorption cooling systems (ACSs). With certain given input parameters, the GT plant produces net power of 36.06 MW, the two STs contribute 17.07 MW while from the ORC, 7.18 MW of net power was obtained. From the steam-operated ACS-I, a net 10.36 MW of cooing could be produced. Again, from the GT exhaust operated ACS-II, it was possible to generate additional 3.37 MW of cooling. From exergy analysis, it was found that the total irreversibility was the highest in the GT cycle with a net contribution of 180.412 MW followed by 4.178 MW from the HRSG, 3.561 MW from the ORC, 1.743 MW from ACS-I, 1.186 MW from ST-I, 0.812 MW from ACS-II, 0.175 MW from ST-II. The exergy efficiencies of the GT cycle, ORC, ACS-I and ACS-II were found 22.00%, 65.48%, 18.95% and 14.4% respectively. Regarding the power and cooling output, it can be concluded that these results are specific to the selected operating parameters. Further investigation is required, where, other similar configurations may be considered to make a final comment on the suitability of the proposed configuration from energy output and economic point of view.


Sign in / Sign up

Export Citation Format

Share Document