scholarly journals White-Nose Syndrome fungus introduced from Europe to North America

2015 ◽  
Vol 25 (6) ◽  
pp. R217-R219 ◽  
Author(s):  
Stefania Leopardi ◽  
Damer Blake ◽  
Sébastien J. Puechmaille
2014 ◽  
Vol 9 (4) ◽  
pp. 437-443 ◽  
Author(s):  
Konrad Sachanowicz ◽  
Arkadiusz Stępień ◽  
Mateusz Ciechanowski

AbstractPseudogymnoascus destructans (Pd), a parasitic fungus (being responsible for a disease known as white-nose syndrome, WNS) that caused mass mortality of cave-dwelling, hibernating bats in North America, appears to be native of Europe, where it also occurs on wintering bats, but no similar outbreaks of WNS have been recorded. Herein, we provide the first account on prevalence and phenology of P. destructans in Poland. Bats were counted once per month, from October or January to May (2010-2013), in an abandoned ore mine in southern Poland. Presence of P. destructans in two samples was confirmed by sequencing of isolated fungal DNA. Observations of phenotypically identical mycosis on bats hibernating at this site in March 2006 are likely to be the first known records of P. destructans from Poland. All Pd-suspected individuals were Myotis myotis with an exception of one Myotis daubentonii. The first Pd-suspected bats were noted in mid-February, but their number was the highest in March, what overlapped with maximum numbers of hibernating M. myotis. The prevalence in March was 7%–27% of M. myotis individuals. No mass mortality of bats was observed in the mine, with only three dead individuals found in the hibernaculum which hosted up to 130 bats, representing 6–7 species.


2013 ◽  
Vol 21 (1) ◽  
pp. 28-39 ◽  
Author(s):  
Roger W. Perry

The fungal pathogen Geomyces destructans, which causes white-nose syndrome in bats, thrives in the cold and moist conditions found in caves where bats hibernate. To aid managers and researchers address this disease, an updated and accessible review of cave hibernacula and cave microclimates is presented. To maximize energy savings and reduce evaporative water loss during winter, most temperate vespertilionid bats in North America select caves with temperatures between 2 and 10 °C, with 60%–100% relative humidity. Generally, the temperature in caves is similar to the mean annual surface temperature (MAST) of a region, which varies by latitude, altitude, and topography. However, MAST for most areas where caves are found in eastern North America is well above 10 °C. Thus, various factors cause cold-air infiltration that reduces temperatures of these caves during winter. These factors include depth of cave, topographic setting, airflow patterns, cave configuration, and water infiltration. Factors affecting humidity, condensation, and evaporation are also addressed. In areas where MAST is above or below the thermal requirements of Geomyces destructans, many caves used by bats as hibernacula may still provide favorable sites for optimal growth of this fungus.


mBio ◽  
2017 ◽  
Vol 8 (6) ◽  
Author(s):  
Kevin P. Drees ◽  
Jeffrey M. Lorch ◽  
Sebastien J. Puechmaille ◽  
Katy L. Parise ◽  
Gudrun Wibbelt ◽  
...  

ABSTRACT Globalization has facilitated the worldwide movement and introduction of pathogens, but epizoological reconstructions of these invasions are often hindered by limited sampling and insufficient genetic resolution among isolates. Pseudogymnoascus destructans , a fungal pathogen causing the epizootic of white-nose syndrome in North American bats, has exhibited few genetic polymorphisms in previous studies, presenting challenges for both epizoological tracking of the spread of this fungus and for determining its evolutionary history. We used single nucleotide polymorphisms (SNPs) from whole-genome sequencing and microsatellites to construct high-resolution phylogenies of P. destructans . Shallow genetic diversity and the lack of geographic structuring among North American isolates support a recent introduction followed by expansion via clonal reproduction across the epizootic zone. Moreover, the genetic relationships of isolates within North America suggest widespread mixing and long-distance movement of the fungus. Genetic diversity among isolates of P. destructans from Europe was substantially higher than in those from North America. However, genetic distance between the North American isolates and any given European isolate was similar to the distance between the individual European isolates. In contrast, the isolates we examined from Asia were highly divergent from both European and North American isolates. Although the definitive source for introduction of the North American population has not been conclusively identified, our data support the origin of the North American invasion by P. destructans from Europe rather than Asia. IMPORTANCE This phylogenetic study of the bat white-nose syndrome agent, P. destructans , uses genomics to elucidate evolutionary relationships among populations of the fungal pathogen to understand the epizoology of this biological invasion. We analyze hypervariable and abundant genetic characters (microsatellites and genomic SNPs, respectively) to reveal previously uncharacterized diversity among populations of the pathogen from North America and Eurasia. We present new evidence supporting recent introduction of the fungus to North America from a diverse Eurasian population, with limited increase in genetic variation in North America since that introduction.


2020 ◽  
Author(s):  
Melissa B. Meierhofer ◽  
Thomas M. Lilley ◽  
Lasse Ruokolainen ◽  
Joseph S. Johnson ◽  
Steven Parratt ◽  
...  

AbstractPredicting the emergence and spread of infectious diseases is critical for effective conservation of biodiversity. White-nose syndrome (WNS), an emerging infectious disease of bats, has resulted in high mortality in eastern North America. Because the fungal causative agent Pseudogymnoascus destructans is constrained by temperature and humidity, spread dynamics may vary greatly by geography. Environmental conditions in the southern part of the continent, where disease dynamics are typically studied, making it difficult to predict how the disease will manifest. Herein, we modeled the spread of WNS in Texas based on available cave densities and average dispersal distances of species occupying these sites, and projected these results out to 10 years. We parameterized a predictive model of WNS epidemiology and its effects on hibernatory bat populations with observed environmental data from bat hibernation sites in Texas. Our model suggests that bat populations in northern Texas will be more affected by WNS mortality than southern Texas. As such, we recommend prioritizing the preservation of large overwintering colonies of bats in north Texas through management actions. Our model further illustrates that infectious disease spread and infectious disease severity can become uncoupled over a gradient of environmental variation. Finally, our results highlight the importance of understanding host, pathogen and environmental conditions in various settings to elucidate what may happen across a breadth of environments.


Author(s):  
Karen J. Vanderwolf ◽  
Lewis J. Campbell ◽  
Daniel R. Taylor ◽  
Tony L. Goldberg ◽  
David S. Blehert ◽  
...  

White-nose syndrome is one of the most devastating wildlife diseases ever documented. Some bat species are resistant to or tolerant of the disease, and we previously reported that certain traits of the skin mycobiome of bat species in eastern North America are strongly associated with resistance to WNS.


2020 ◽  
Vol 10 (6) ◽  
pp. 2007-2020 ◽  
Author(s):  
Thomas M. Lilley ◽  
Ian W. Wilson ◽  
Kenneth A. Field ◽  
DeeAnn M. Reeder ◽  
Megan E. Vodzak ◽  
...  

Novel pathogens can cause massive declines in populations, and even extirpation of hosts. But disease can also act as a selective pressure on survivors, driving the evolution of resistance or tolerance. Bat white-nose syndrome (WNS) is a rapidly spreading wildlife disease in North America. The fungus causing the disease invades skin tissues of hibernating bats, resulting in disruption of hibernation behavior, premature energy depletion, and subsequent death. We used whole-genome sequencing to investigate changes in allele frequencies within a population of Myotis lucifugus in eastern North America to search for genetic resistance to WNS. Our results show low FST values within the population across time, i.e., prior to WNS (Pre-WNS) compared to the population that has survived WNS (Post-WNS). However, when dividing the population with a geographical cut-off between the states of Pennsylvania and New York, a sharp increase in values on scaffold GL429776 is evident in the Post-WNS samples. Genes present in the diverged area are associated with thermoregulation and promotion of brown fat production. Thus, although WNS may not have subjected the entire M. lucifugus population to selective pressure, it may have selected for specific alleles in Pennsylvania through decreased gene flow within the population. However, the persistence of remnant sub-populations in the aftermath of WNS is likely due to multiple factors in bat life history.


mSphere ◽  
2017 ◽  
Vol 2 (4) ◽  
Author(s):  
Jigar Trivedi ◽  
Josianne Lachapelle ◽  
Karen J. Vanderwolf ◽  
Vikram Misra ◽  
Craig K. R. Willis ◽  
...  

ABSTRACT Emerging fungal diseases of wildlife are on the rise worldwide, and the white-nose syndrome (WNS) epidemic in North American bats is a catastrophic example. The causal agent of WNS is a single clone of the fungus Pseudogymnoascus destructans. Early evolutionary change in this clonal population has major implications for disease ecology and conservation. Accumulation of variation in the fungus through mutation, and shuffling of variation through recombination, could affect the virulence and transmissibility of the fungus and the durability of what appears to be resistance arising in some bat populations. Our genome-wide analysis shows that the clonal population of P. destructans has expanded in size from a single genotype, has begun to accumulate variation through mutation, and presents no evidence as yet of genetic exchange among individuals. IMPORTANCE Since its discovery in 2006, the emerging infectious disease known as white-nose syndrome has killed millions of bats in North America, making it one of the most devastating wildlife epidemics in recorded history. We demonstrate that there has been as yet only spontaneous mutation across the North American population of P. destructans, and we find no indication of recombination. Thus, selective forces, which might otherwise impact pathogenic virulence, have so far had essentially no genetic variation on which to act. Our study confirmed the time of origin for the first and, thus far, only introduction of P. destructans to North America. This system provides an unprecedented opportunity to follow the evolution of a host-pathogen interaction unfolding in real time.


Biologia ◽  
2011 ◽  
Vol 66 (3) ◽  
Author(s):  
Alexandra Šimonovičov ◽  
Domenico Pangallo ◽  
Katarína Chovanová ◽  
Blanka Lehotská

AbstractThe paper describes macro- and micromorphological features of Geomyces destructans, the fungus which is associated with the white-nose syndrome (WNS) bat disease in North America. This species was isolated from hibernating Myotis myotis at two sites in Malé Karpaty Mts (the old mine Pod medveđou skalou and the ZbojnÍcka Cave) in Western Slovakia. Besides Geomyces destructans, the species Isaria farinosa, Cladosporium macrocarpum and Alternaria tenuissima were isolated, too. All strains are deposed at the Department of Soil Science, Comenius University in Bratislava (Slovakia) and in CMF at Institute of Soil Biology in Českějovice (Czech Republic).


mSphere ◽  
2016 ◽  
Vol 1 (4) ◽  
Author(s):  
Jeffrey M. Lorch ◽  
Jonathan M. Palmer ◽  
Daniel L. Lindner ◽  
Anne E. Ballmann ◽  
Kyle G. George ◽  
...  

ABSTRACT White-nose syndrome (WNS) represents one of the most consequential wildlife diseases of modern times. Since it was first documented in New York in 2006, the disease has killed millions of bats and threatens several formerly abundant species with extirpation or extinction. The spread of WNS in eastern North America has been relatively gradual, inducing optimism that disease mitigation strategies could be established in time to conserve bats susceptible to WNS in western North America. The recent detection of the fungus that causes WNS in the Pacific Northwest, far from its previous known distribution, increases the urgency for understanding the long-term impacts of this disease and for developing strategies to conserve imperiled bat species. White-nose syndrome (WNS) is an emerging fungal disease of bats caused by Pseudogymnoascus destructans. Since it was first detected near Albany, NY, in 2006, the fungus has spread across eastern North America, killing unprecedented numbers of hibernating bats. The devastating impacts of WNS on Nearctic bat species are attributed to the likely introduction of P. destructans from Eurasia to naive host populations in eastern North America. Since 2006, the disease has spread in a gradual wavelike pattern consistent with introduction of the pathogen at a single location. Here, we describe the first detection of P. destructans in western North America in a little brown bat (Myotis lucifugus) from near Seattle, WA, far from the previously recognized geographic distribution of the fungus. Whole-genome sequencing and phylogenetic analyses indicated that the isolate of P. destructans from Washington grouped with other isolates of a presumed clonal lineage from the eastern United States. Thus, the occurrence of P. destructans in Washington does not likely represent a novel introduction of the fungus from Eurasia, and the lack of intensive surveillance in the western United States makes it difficult to interpret whether the occurrence of P. destructans in the Pacific Northwest is disjunct from that in eastern North America. Although there is uncertainty surrounding the impacts of WNS in the Pacific Northwest, the presence of the pathogen in western North America could have major consequences for bat conservation. IMPORTANCE White-nose syndrome (WNS) represents one of the most consequential wildlife diseases of modern times. Since it was first documented in New York in 2006, the disease has killed millions of bats and threatens several formerly abundant species with extirpation or extinction. The spread of WNS in eastern North America has been relatively gradual, inducing optimism that disease mitigation strategies could be established in time to conserve bats susceptible to WNS in western North America. The recent detection of the fungus that causes WNS in the Pacific Northwest, far from its previous known distribution, increases the urgency for understanding the long-term impacts of this disease and for developing strategies to conserve imperiled bat species.


Sign in / Sign up

Export Citation Format

Share Document