scholarly journals In Situ Clock Shift Reveals that the Sun Compass Contributes to Orientation in a Pelagic Seabird

2018 ◽  
Vol 28 (2) ◽  
pp. 275-279.e2 ◽  
Author(s):  
Oliver Padget ◽  
Sarah L. Bond ◽  
Marwa M. Kavelaars ◽  
Emiel van Loon ◽  
Mark Bolton ◽  
...  
1996 ◽  
Vol 263 (1370) ◽  
pp. 529-534 ◽  

Several studies have shown that birds have a directional view of space and tend to use the sun compass over landmark beacons when both are available. Intact homing pigeons can use either the sun compass or colour beacons to locate a food reward, whereas pigeons with hippocampal lesions are unable to use the sun compass, but quickly learn to use colour beacons. We trained hippocampal ablated and intact pigeons to find a reward in an outdoor octagonal arena when both sun compass information (directional cues) and intramaze landmark beacons (colour cues) were available. The intact control pigeons learned the task by preferentially relying on directional cues while effectively ignoring the colour beacons. The behaviour of the hippocampal ablated birds, based on a clock-shift manipulation and after the rotation of the colour beacons, showed that they learned to locate the food reward in the arena only on the basis of the landmark beacons, ignoring the sun compass directional information.


1997 ◽  
Vol 200 (16) ◽  
pp. 2269-2277 ◽  
Author(s):  
J Chappell

Clock-shifting (altering the phase of the internal clock) in homing pigeons leads to a deflection in the vanishing bearing of the clock-shifted group relative to controls. However, two unexplained phenomena are common in clock-shift experiments: the vanishing bearings of the clock-shifted group are often more scattered (with a shorter vector length) than those of the control group, and the deflection of the mean bearing of the clock-shifted group from that of the controls is often smaller than expected theoretically. Here, an analysis of 55 clock-shift experiments performed in four countries over 21 years is reported. The bearings of the clock-shifted groups were significantly more scattered than those of controls and less deflected than expected, but these effects were not significantly different at familiar and unfamiliar sites. The possible causes of the effects are discussed and evaluated with reference to this analysis and other experiments. The most likely causes appear to be conflict between the directions indicated by the sun compass and either unshifted familiar visual landmarks (at familiar sites only) or the unshifted magnetic compass (possible at both familiar and unfamiliar sites).


1999 ◽  
Vol 202 (16) ◽  
pp. 2121-2126 ◽  
Author(s):  
H.G. Wallraff ◽  
J. Chappell ◽  
T. Guilford

It seems reasonable to assume that pigeons use visual features in the landscape for orientation when they are homing over familiar terrain. Experimental evidence to prove or disprove this possibility is, however, difficult to obtain. Here, we link the problem with the observation that deflections of initial orientation caused by clock-shift are often smaller than predicted on a pure sun compass basis. We substantiate the hypothesis that consistently reduced deflections and increased angular scatter occur only when pigeons are released in familiar areas where a remembered pattern of landscape features can conflict with the position of the sun. Repeated releases of the same individuals under clock-shift, or elimination of non-visual navigational clues (odours), appear to strengthen the conflicting influence of familiar visual landmarks. Accelerated returns of birds allowed to preview the surrounding familiar scenery before release also support the conclusion that the visual environment is included in the homing system of pigeons. The landscape, however, not only helps home-finding, if it is familiar, but may also have a distracting influence that contributes to the great variability of initial orientation patterns.


1993 ◽  
Vol 181 (1) ◽  
pp. 233-244 ◽  
Author(s):  
U. Munro ◽  
R. Wiltschko

The behaviour of an Australian day migrant, the yellow-faced honeyeater Lichenostomus chrysops, was studied in order to assess the role of the sun in migratory orientation. During autumn migration, all tests took place under a sunny sky; birds were tested while living in the natural photoperiod (control) and with their internal clock shifted 4 h fast and 4 h slow. In spring, all birds were shifted 3 h fast; tests in overcast conditions, with the birds relying on their magnetic compass, served as controls. In control tests in both seasons, the birds preferred directions corresponding to those observed in the wild. When tested under sunny conditions with their internal clock shifted, the birds changed their directional tendencies. However, their preferred directions were different from those expected if a time-compensating sun compass was being used. After about 6 days, the shifted birds' directions were no longer different from the control direction. This behaviour argues against a major role of the sun compass in the orientation of day migrants. The dramatic changes of the sun's arc with geographic latitute might cause day-migrating birds to prefer a more constant orientation cue, such as the geomagnetic field. The initial response to the clock-shift might have occurred because the birds were confused by the conflicting information from solar and magnetic cues. This suggests that the sun is usually used as a secondary cue in combination with the magnetic field.


1930 ◽  
Vol 142 (3) ◽  
pp. 232-234
Author(s):  
Alexander Klemin
Keyword(s):  
The Sun ◽  

2020 ◽  
Vol 9 (4) ◽  
pp. 35-43
Author(s):  
Chris Ingraham

Drawing from in situ fieldwork in Longyearbyen, Svalbard, the northernmost settlement on Earth, these notes bring out the affective, ambient, and atmospheric power of extended darkness during the polar night, when the sun does not appear above the horizon for several months at a time. Each entry is composed of 113 words to reflect the number of days without light in Longyearbyen during the winter of my visit. Through a mixture of ethnographic observations, researched academic scholarship, and some endeavors of poetic worldmaking, these notes attempt to evoke the ineffable force of global warming by performing the sort of acutely observed and felt attentiveness to planetary being that is needed for our time.


2017 ◽  
Vol 12 (S330) ◽  
pp. 148-151 ◽  
Author(s):  
Edouard J. Bernard

AbstractWe took advantage of the Gaia DR1 to combine TGAS parallaxes with Tycho-2 and APASS photometry to calculate the star formation history (SFH) of the solar neighbourhood within 250 pc using the colour-magnitude diagram fitting technique. We present the determination of the completeness within this volume, and compare the resulting SFH with that calculated from the Hipparcos catalogue within 80 pc of the Sun. We also show how this technique will be applied out to ~5 kpc thanks to the next Gaia data releases, which will allow us to quantify the SFH of the thin disc, thick disc and halo in situ, rather than extrapolating based on the stars from these components that are today in the solar neighbourhood.


2005 ◽  
Vol 23 (5) ◽  
pp. 1931-1941 ◽  
Author(s):  
I. M. Robinson ◽  
G. M. Simnett

Abstract. We examine the solar energetic particle event following solar activity from 14, 15 April 2001 which includes a "bump-on-the-tail" in the proton energy spectra at 0.99 AU from the Sun. We find this population was generated by a CME-driven shock which arrived at 0.99 AU around midnight 18 April. As such this population represents an excellent opportunity to study in isolation, the effects of proton acceleration by the shock. The peak energy of the bump-on-the-tail evolves to progressively lower energies as the shock approaches the observing spacecraft at the inner Lagrange point. Focusing on the evolution of this peak energy we demonstrate a technique which transforms these in-situ spectral observations into a frame of reference co-moving with the shock whilst making allowance for the effects of pitch angle scattering and focusing. The results of this transform suggest the bump-on-the-tail population was not driven by the 15 April activity but was generated or at least modulated by a CME-driven shock which left the Sun on 14 April. The existence of a bump-on-the-tail population is predicted by models in Rice et al. (2003) and Li et al. (2003) which we compare with observations and the results of our analysis in the context of both the 14 April and 15 April CMEs. We find an origin of the bump-on-the-tail at the 14 April CME-driven shock provides better agreement with these modelled predictions although some discrepancy exists as to the shock's ability to accelerate 100 MeV protons. Keywords. Solar physics, astrophysics and astronomy (Energetic particles; Flares and mass ejections) – Space plasma physics (Transport processes)


2020 ◽  
Vol 642 ◽  
pp. A3 ◽  
Author(s):  
I. Zouganelis ◽  
A. De Groof ◽  
A. P. Walsh ◽  
D. R. Williams ◽  
D. Müller ◽  
...  

Solar Orbiter is the first space mission observing the solar plasma both in situ and remotely, from a close distance, in and out of the ecliptic. The ultimate goal is to understand how the Sun produces and controls the heliosphere, filling the Solar System and driving the planetary environments. With six remote-sensing and four in-situ instrument suites, the coordination and planning of the operations are essential to address the following four top-level science questions: (1) What drives the solar wind and where does the coronal magnetic field originate?; (2) How do solar transients drive heliospheric variability?; (3) How do solar eruptions produce energetic particle radiation that fills the heliosphere?; (4) How does the solar dynamo work and drive connections between the Sun and the heliosphere? Maximising the mission’s science return requires considering the characteristics of each orbit, including the relative position of the spacecraft to Earth (affecting downlink rates), trajectory events (such as gravitational assist manoeuvres), and the phase of the solar activity cycle. Furthermore, since each orbit’s science telemetry will be downloaded over the course of the following orbit, science operations must be planned at mission level, rather than at the level of individual orbits. It is important to explore the way in which those science questions are translated into an actual plan of observations that fits into the mission, thus ensuring that no opportunities are missed. First, the overarching goals are broken down into specific, answerable questions along with the required observations and the so-called Science Activity Plan (SAP) is developed to achieve this. The SAP groups objectives that require similar observations into Solar Orbiter Observing Plans, resulting in a strategic, top-level view of the optimal opportunities for science observations during the mission lifetime. This allows for all four mission goals to be addressed. In this paper, we introduce Solar Orbiter’s SAP through a series of examples and the strategy being followed.


Sign in / Sign up

Export Citation Format

Share Document