scholarly journals Dual Role of an mps-2/KCNE-Dependent Pathway in Long-Term Memory and Age-Dependent Memory Decline

2020 ◽  
Author(s):  
Bank G. Fenyves ◽  
Andreas Arnold ◽  
Vaibhav G. Gharat ◽  
Carmen Haab ◽  
Kiril Tishinov ◽  
...  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Hamish Patel ◽  
Reza Zamani

Abstract Long-term memories are thought to be stored in neurones and synapses that undergo physical changes, such as long-term potentiation (LTP), and these changes can be maintained for long periods of time. A candidate enzyme for the maintenance of LTP is protein kinase M zeta (PKMζ), a constitutively active protein kinase C isoform that is elevated during LTP and long-term memory maintenance. This paper reviews the evidence and controversies surrounding the role of PKMζ in the maintenance of long-term memory. PKMζ maintains synaptic potentiation by preventing AMPA receptor endocytosis and promoting stabilisation of dendritic spine growth. Inhibition of PKMζ, with zeta-inhibitory peptide (ZIP), can reverse LTP and impair established long-term memories. However, a deficit of memory retrieval cannot be ruled out. Furthermore, ZIP, and in high enough doses the control peptide scrambled ZIP, was recently shown to be neurotoxic, which may explain some of the effects of ZIP on memory impairment. PKMζ knockout mice show normal learning and memory. However, this is likely due to compensation by protein-kinase C iota/lambda (PKCι/λ), which is normally responsible for induction of LTP. It is not clear how, or if, this compensatory mechanism is activated under normal conditions. Future research should utilise inducible PKMζ knockdown in adult rodents to investigate whether PKMζ maintains memory in specific parts of the brain, or if it represents a global memory maintenance molecule. These insights may inform future therapeutic targets for disorders of memory loss.


2021 ◽  
Vol 15 ◽  
Author(s):  
Daniela S. Rivera ◽  
Carolina B. Lindsay ◽  
Carolina A. Oliva ◽  
Francisco Bozinovic ◽  
Nibaldo C. Inestrosa

Aging is a progressive functional decline characterized by a gradual deterioration in physiological function and behavior. The most important age-related change in cognitive function is decline in cognitive performance (i.e., the processing or transformation of information to make decisions that includes speed of processing, working memory, and learning). The purpose of this study is to outline the changes in age-related cognitive performance (i.e., short-term recognition memory and long-term learning and memory) in long-lived Octodon degus. The strong similarity between degus and humans in social, metabolic, biochemical, and cognitive aspects makes it a unique animal model for exploring the mechanisms underlying the behavioral and cognitive deficits related to natural aging. In this study, we examined young adult female degus (12- and 24-months-old) and aged female degus (38-, 56-, and 75-months-old) that were exposed to a battery of cognitive-behavioral tests. Multivariate analyses of data from the Social Interaction test or Novel Object/Local Recognition (to measure short-term recognition memory), and the Barnes maze test (to measure long-term learning and memory) revealed a consistent pattern. Young animals formed a separate group of aged degus for both short- and long-term memories. The association between the first component of the principal component analysis (PCA) from short-term memory with the first component of the PCA from long-term memory showed a significant negative correlation. This suggests age-dependent differences in both memories, with the aged degus having higher values of long-term memory ability but poor short-term recognition memory, whereas in the young degus an opposite pattern was found. Approximately 5% of the young and 80% of the aged degus showed an impaired short-term recognition memory; whereas for long-term memory about 32% of the young degus and 57% of the aged degus showed decreased performance on the Barnes maze test. Throughout this study, we outlined age-dependent cognitive performance decline during natural aging in degus. Moreover, we also demonstrated that the use of a multivariate approach let us explore and visualize complex behavioral variables, and identified specific behavioral patterns that allowed us to make powerful conclusions that will facilitate further the study on the biology of aging. In addition, this study could help predict the onset of the aging process based on behavioral performance.


Author(s):  
D G Baitubayev ◽  
M D Baitubayeva

The work shows the role of the vegetative nervous system (VNS) in the functioning of long-term memory, identity mechanisms of long-term memory in the human evolutionary adaptation and substance dependence. It is shown that, depending on the substance of the body are states like pro- gressive adaptation, that the bodycondition, depending on the chemical and psychogenic psychoactive- factors state of the same circle. It proposed the creation of a branch of medicine that combines study of the dependence of the organism, both on the chemical and psychoactive psychogenic factors. Given the classification of psychoactive factors.Onomastics formulated definitions of terminology changes and additions to be used in a new branch of medicine. Proposed allocation of the International Classifica- tion of diseases separate chapter for the classification of states like progressive adaptation of the body depending on psychoactive factors.


1991 ◽  
Vol 14 (1) ◽  
pp. 30-31 ◽  
Author(s):  
Martin Harrow ◽  
Marshall Silverstein

Sign in / Sign up

Export Citation Format

Share Document