Rab34 GTPase mediates ciliary membrane formation in the intracellular ciliogenesis pathway

2021 ◽  
Author(s):  
Anil Kumar Ganga ◽  
Margaret C. Kennedy ◽  
Mai E. Oguchi ◽  
Shawn Gray ◽  
Kendall E. Oliver ◽  
...  
PLoS Biology ◽  
2020 ◽  
Vol 18 (12) ◽  
pp. e3001034
Author(s):  
Zhimao Wu ◽  
Nan Pang ◽  
Yingying Zhang ◽  
Huicheng Chen ◽  
Ying Peng ◽  
...  

Cilia play critical roles during embryonic development and adult homeostasis. Dysfunction of cilia leads to various human genetic diseases, including many caused by defects in transition zones (TZs), the “gates” of cilia. The evolutionarily conserved TZ component centrosomal protein 290 (CEP290) is the most frequently mutated human ciliopathy gene, but its roles in ciliogenesis are not completely understood. Here, we report that CEP290 plays an essential role in the initiation of TZ assembly in Drosophila. Mechanistically, the N-terminus of CEP290 directly recruits DAZ interacting zinc finger protein 1 (DZIP1), which then recruits Chibby (CBY) and Rab8 to promote early ciliary membrane formation. Complete deletion of CEP290 blocks ciliogenesis at the initiation stage of TZ assembly, which can be mimicked by DZIP1 deletion mutants. Remarkably, expression of the N-terminus of CEP290 alone restores the TZ localization of DZIP1 and subsequently ameliorates the defects in TZ assembly initiation in cep290 mutants. Our results link CEP290 to DZIP1-CBY/Rab8 module and uncover a previously uncharacterized important function of CEP290 in the coordination of early ciliary membrane formation and TZ assembly.


Author(s):  
Edna S. Kaneshiro

It is currently believed that ciliary beating results from microtubule sliding which is restricted in regions to cause bending. Cilia beat can be modified to bring about changes in beat frequency, cessation of beat and reversal in beat direction. In ciliated protozoans these modifications which determine swimming behavior have been shown to be related to intracellular (intraciliary) Ca2+ concentrations. The Ca2+ levels are in turn governed by the surface ciliary membrane which exhibits increased Ca2+ conductance (permeability) in response to depolarization. Mutants with altered behaviors have been isolated. Pawn mutants fail to exhibit reversal of the effective stroke of ciliary beat and therefore cannot swim backward. They lack the increased inward Ca2+ current in response to depolarizing stimuli. Both normal and pawn Paramecium made leaky to Ca2+ by Triton extrac¬tion of the surface membrane exhibit backward swimming only in reactivating solutions containing greater than IO-6 M Ca2+ Thus in pawns the ciliary reversal mechanism itself is left operational and only the control mechanism at the membrane is affected. The topographic location of voltage-dependent Ca2+ channels has been identified as a component of the ciliary mem¬brane since the inward Ca2+ conductance response is eliminated by deciliation and the return of the response occurs during cilia regeneration. Since the ciliary membrane has been impli¬cated in the control of Ca2+ levels in the cilium and therefore is the site of at least one kind of control of microtubule sliding, we have focused our attention on understanding the structure and function of the membrane.


Langmuir ◽  
2021 ◽  
Author(s):  
Fatma Pir Cakmak ◽  
Allyson M. Marianelli ◽  
Christine D. Keating

2015 ◽  
Vol 713-715 ◽  
pp. 2723-2726
Author(s):  
Yue Rong Shi ◽  
Gui Fang Zhang ◽  
Xing Tian Liu ◽  
Xue Tao Tian ◽  
Yi Ping Zhao ◽  
...  

In this study, poly (vinylidene fluoride) (PVDF) hybrid membranes were prepared from polymeric blend of PVDF/tannic acid (TA)-Attapulgite (ATP)/PEG system via phase inversion induced by immersion precipitation in water coagulation bath. The membrane formation mechanism of PVDF/TA-ATP/PEG casting solutions in water bath thermodynamics at different temperatures and the process of membrane formation were investigated via cloud point determination and ultrasonic time-domain reflectometry (UTDR). The structures and properties of the membrane were characterized by scanning electron microscopy (SEM), and water permeation experiment, respectively. It was found that the rate of precipitation controlled by the Coagulation-Bath thermodynamics. With the coagulation temperature increasing, the gelation line was moved to non-solvent axis and the pure water flux were decreased.


Sign in / Sign up

Export Citation Format

Share Document