The combined use of lead–tin yellow type I and II on a canvas painting by Pietro Perugino

2007 ◽  
Vol 8 (1) ◽  
pp. 65-68 ◽  
Author(s):  
Ilaria Borgia ◽  
Brunetto Giovanni Brunetti ◽  
Costanza Miliani ◽  
Camilla Ricci ◽  
Claudio Seccaroni ◽  
...  
2019 ◽  
Vol 38 ◽  
pp. 8-19 ◽  
Author(s):  
Silvie Švarcová ◽  
Eva Kočí ◽  
Jiří Plocek ◽  
Assel Zhankina ◽  
Janka Hradilová ◽  
...  
Keyword(s):  
Egg Yolk ◽  
Type I ◽  

2019 ◽  
Vol 2019 (5) ◽  
pp. 12-15
Author(s):  
Вячеслав Анников ◽  
Vyacheslav Annikov ◽  
Александр Наровлянский ◽  
Aleksandr Narovlyanskiy ◽  
Александр Санин ◽  
...  

This study considers the efficiency of use of a combined drug based on beta-sitosterol and polyprenyl phosphates in dogs with type I diabetes mellitus complicated by hyperlipidemia. It was shown that after 1 month of the therapy, there was a significant decrease of the level of cholesterol, triglycerides and glucose vs. control animals. After 2 months of the therapy, in the control group the level of cholesterol and triglycerides was at the upper limit of the norm, which can lead to an exacerbation of the disease in future.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Justyna Olszewska-Świetlik ◽  
Bożena Szmelter-Fausek ◽  
Ewa Pięta ◽  
Edyta Proniewicz

This work presents spectroscopic (optical microscopy, OM; micro-Raman, Raman; and Fourier-transform adsorption infrared, FT-IR) and gas chromatographic studies of two famous panel paintings from the Gdańsk artists of the 17th century Golden Age, “Servilius Appius” by Isaac van den Blocke and “Allegory of Wealth” probably by Anton Möller. Application of the aforementioned methods allowed us to identify pigments and binders used in the panel paintings. In particular, it was determined that the yellow pigment used by both artists is lead-tin yellow type I (2PbO·SnO2), the white pigment is lead (II) carbonate hydroxide (2PbCO3·Pb(OH)2), and the ground layer material consist of chalk (CaCO3). The analysis showed also that in the case of “Allegory of Wealth,” the red layer consists not only of cinnabar (HgS) but also of lead-tin yellow type I.


Author(s):  
Ronald S. Weinstein ◽  
N. Scott McNutt

The Type I simple cold block device was described by Bullivant and Ames in 1966 and represented the product of the first successful effort to simplify the equipment required to do sophisticated freeze-cleave techniques. Bullivant, Weinstein and Someda described the Type II device which is a modification of the Type I device and was developed as a collaborative effort at the Massachusetts General Hospital and the University of Auckland, New Zealand. The modifications reduced specimen contamination and provided controlled specimen warming for heat-etching of fracture faces. We have now tested the Mass. General Hospital version of the Type II device (called the “Type II-MGH device”) on a wide variety of biological specimens and have established temperature and pressure curves for routine heat-etching with the device.


Author(s):  
E. Horvath ◽  
K. Kovacs ◽  
I. E. Stratmann ◽  
C. Ezrin

Surgically removed human pituitary glands as well as pituitary tumors fixed in glutaraldehyde, postfixed in osmium tetroxide, embedded in epon resin, stained with uranyl acetate and lead citrate have been investigated by electron microscopy in order to correlate ultrastructure with functional activity. In the course of this study two distinct types of microfilaments have been identified in the cytoplasm of adenohypophysiocytes.Type I microfilaments (Fig. 1) were found in the cytoplasm of anterior lobe cells of five female subjects with disseminated mammary cancer and two patients with severe diabetes mellitus. The breast cancer patients were treated pre-operatively for various periods of time with different doses of oxysteroids. The microfilaments had an average diameter of JO A, formed parallel bundles, were scattered irregularly in the cytoplasm and were frequently located in the perikaryon. They were not membrane-bound and failed to show any periodicity.


Author(s):  
W. Jurecka ◽  
W. Gebhart ◽  
H. Lassmann

Diagnosis of metabolic storage disease can be established by the determination of enzymes or storage material in blood, urine, or several tissues or by clinical parameters. Identification of the accumulated storage products is possible by biochemical analysis of isolated material, by histochemical demonstration in sections, or by ultrastructural demonstration of typical inclusion bodies. In order to determine the significance of such inclusions in human skin biopsies several types of metabolic storage disease were investigated. The following results were obtained.In MPS type I (Pfaundler-Hurler-Syndrome), type II (Hunter-Syndrome), and type V (Ullrich-Scheie-Syndrome) mainly “empty” vacuoles were found in skin fibroblasts, in Schwann cells, keratinocytes and macrophages (Dorfmann and Matalon 1972). In addition, prominent vacuolisation was found in eccrine sweat glands. The storage material could be preserved in part by fixation with cetylpyridiniumchloride and was also present within fibroblasts grown in tissue culture.


Author(s):  
E.M. Kuhn ◽  
K.D. Marenus ◽  
M. Beer

Fibers composed of different types of collagen cannot be differentiated by conventional electron microscopic stains. We are developing staining procedures aimed at identifying collagen fibers of different types.Pt(Gly-L-Met)Cl binds specifically to sulfur-containing amino acids. Different collagens have methionine (met) residues at somewhat different positions. A good correspondence has been reported between known met positions and Pt(GLM) bands in rat Type I SLS (collagen aggregates in which molecules lie adjacent to each other in exact register). We have confirmed this relationship in Type III collagen SLS (Fig. 1).


Author(s):  
G. D. Gagne ◽  
M. F. Miller ◽  
D. A. Peterson

Experimental infection of chimpanzees with non-A, non-B hepatitis (NANB) or with delta agent hepatitis results in the appearance of characteristic cytoplasmic alterations in the hepatocytes. These alterations include spongelike inclusions (Type I), attached convoluted membranes (Type II), tubular structures (Type III), and microtubular aggregates (Type IV) (Fig. 1). Type I, II and III structures are, by association, believed to be derived from endoplasmic reticulum and may be morphogenetically related. Type IV structures are generally observed free in the cytoplasm but sometimes in the vicinity of type III structures. It is not known whether these structures are somehow involved in the replication and/or assembly of the putative NANB virus or whether they are simply nonspecific responses to cellular injury. When treated with uranyl acetate, type I, II and III structures stain intensely as if they might contain nucleic acids. If these structures do correspond to intermediates in the replication of a virus, one might expect them to contain DNA or RNA and the present study was undertaken to explore this possibility.


Sign in / Sign up

Export Citation Format

Share Document