scholarly journals Local maximum stable set greedoids stemming from very well-covered graphs

2012 ◽  
Vol 160 (12) ◽  
pp. 1864-1871 ◽  
Author(s):  
Vadim E. Levit ◽  
Eugen Mandrescu
2011 ◽  
Vol 03 (02) ◽  
pp. 245-252 ◽  
Author(s):  
VADIM E. LEVIT ◽  
EUGEN MANDRESCU

A maximum stable set in a graph G is a stable set of maximum cardinality. S is a local maximum stable set of G, and we write S ∈ Ψ(G), if S is a maximum stable set of the subgraph induced by S ∪ N(S), where N(S) is the neighborhood of S. Nemhauser and Trotter Jr. [Vertex packings: structural properties and algorithms, Math. Program.8 (1975) 232–248], proved that any S ∈ Ψ(G) is a subset of a maximum stable set of G. In [Levit and Mandrescu, A new greedoid: the family of local maximum stable sets of a forest, Discrete Appl. Math.124 (2002) 91–101] we have shown that the family Ψ(T) of a forest T forms a greedoid on its vertex set. The cases where G is bipartite, triangle-free, well-covered, while Ψ(G) is a greedoid, were analyzed in [Levit and Mandrescu, Local maximum stable sets in bipartite graphs with uniquely restricted maximum matchings, Discrete Appl. Math.132 (2004) 163–174], [Levit and Mandrescu, Triangle-free graphs with uniquely restricted maximum matchings and their corresponding greedoids, Discrete Appl. Math.155 (2007) 2414–2425], [Levit and Mandrescu, Well-covered graphs and greedoids, Proc. 14th Computing: The Australasian Theory Symp. (CATS2008), Wollongong, NSW, Conferences in Research and Practice in Information Technology, Vol. 77 (2008) 89–94], respectively. In this paper we demonstrate that if G is a very well-covered graph of girth ≥4, then the family Ψ(G) is a greedoid if and only if G has a unique perfect matching.


2014 ◽  
Vol 30 (3) ◽  
pp. 335-344
Author(s):  
VADIM E. LEVIT ◽  
◽  
EUGEN MANDRESCU ◽  

Let Ψ(G) be the family of all local maximum stable sets of graph G, i.e., S ∈ Ψ(G) if S is a maximum stable set of the subgraph induced by S ∪ N(S), where N(S) is the neighborhood of S. It was shown that Ψ(G) is a greedoid for every forest G [15]. The cases of bipartite graphs, triangle-free graphs, and well-covered graphs, were analyzed in [16, 17, 18, 19, 20, 24]. If G1, G2 are two disjoint graphs, and B is a bipartite graph having E(B) as an edge set and bipartition {V (G1), V (G2)}, then by B-join of G1, G2 we mean the graph B (G1, G2) whose vertex set is V (G1) ∪ V (G2) and edge set is E(G1) ∪ E(G2) ∪ E (B). In this paper we present several necessary and sufficient conditions for Ψ(B (G1, G2)) to form a greedoid, an antimatroid, and a matroid, in terms of Ψ(G1), Ψ(G2) and E (B).


2012 ◽  
Vol 312 (3) ◽  
pp. 588-596 ◽  
Author(s):  
Vadim E. Levit ◽  
Eugen Mandrescu

Author(s):  
Yuzhu Wang ◽  
Akihiro Tanaka ◽  
Akiko Yoshise

AbstractWe develop techniques to construct a series of sparse polyhedral approximations of the semidefinite cone. Motivated by the semidefinite (SD) bases proposed by Tanaka and Yoshise (Ann Oper Res 265:155–182, 2018), we propose a simple expansion of SD bases so as to keep the sparsity of the matrices composing it. We prove that the polyhedral approximation using our expanded SD bases contains the set of all diagonally dominant matrices and is contained in the set of all scaled diagonally dominant matrices. We also prove that the set of all scaled diagonally dominant matrices can be expressed using an infinite number of expanded SD bases. We use our approximations as the initial approximation in cutting plane methods for solving a semidefinite relaxation of the maximum stable set problem. It is found that the proposed methods with expanded SD bases are significantly more efficient than methods using other existing approximations or solving semidefinite relaxation problems directly.


2016 ◽  
Vol 210 ◽  
pp. 223-234
Author(s):  
Manoel Campêlo ◽  
Victor A. Campos ◽  
Ricardo C. Corrêa ◽  
Diego Delle Donne ◽  
Javier Marenco ◽  
...  

2005 ◽  
Vol 14 (03) ◽  
pp. 311 ◽  
Author(s):  
PETER L. HAMMER ◽  
IGOR E. ZVEROVICH

2013 ◽  
Vol 60 (3) ◽  
pp. 393-423 ◽  
Author(s):  
Monique Laurent ◽  
Zhao Sun

2002 ◽  
Vol 94 (1) ◽  
pp. 137-166 ◽  
Author(s):  
Samuel Burer ◽  
Renato D.C. Monteiro ◽  
Yin Zhang

2016 ◽  
Vol 160 (1-2) ◽  
pp. 407-431 ◽  
Author(s):  
Gábor Braun ◽  
Samuel Fiorini ◽  
Sebastian Pokutta

Sign in / Sign up

Export Citation Format

Share Document