scholarly journals Intersection of longest paths in graph classes

2020 ◽  
Vol 281 ◽  
pp. 96-105 ◽  
Author(s):  
Márcia R. Cerioli ◽  
Paloma T. Lima
Keyword(s):  
2016 ◽  
Vol 55 ◽  
pp. 139-142 ◽  
Author(s):  
Márcia R. Cerioli ◽  
Paloma Lima
Keyword(s):  

2007 ◽  
Vol 18 (05) ◽  
pp. 911-930 ◽  
Author(s):  
RYUHEI UEHARA ◽  
YUSHI UNO

The longest path problem is the one that finds a longest path in a given graph. While the graph classes in which the Hamiltonian path problem can be solved efficiently are widely investigated, few graph classes are known to be solved efficiently for the longest path problem. Among those, for trees, a simple linear time algorithm for the longest path problem is known. We first generalize the algorithm, and show that the longest path problem can be solved efficiently for some tree-like graph classes by this approach. We next propose two new graph classes that have natural interval representations, and show that the longest path problem can be solved efficiently on these classes.


Algorithms ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 164
Author(s):  
Tobias Rupp ◽  
Stefan Funke

We prove a Ω(n) lower bound on the query time for contraction hierarchies (CH) as well as hub labels, two popular speed-up techniques for shortest path routing. Our construction is based on a graph family not too far from subgraphs that occur in real-world road networks, in particular, it is planar and has a bounded degree. Additionally, we borrow ideas from our lower bound proof to come up with instance-based lower bounds for concrete road network instances of moderate size, reaching up to 96% of an upper bound given by a constructed CH. For a variant of our instance-based schema applied to some special graph classes, we can even show matching upper and lower bounds.


2021 ◽  
Vol 64 (5) ◽  
pp. 98-105
Author(s):  
Martin Grohe ◽  
Daniel Neuen

We investigate the interplay between the graph isomorphism problem, logical definability, and structural graph theory on a rich family of dense graph classes: graph classes of bounded rank width. We prove that the combinatorial Weisfeiler-Leman algorithm of dimension (3 k + 4) is a complete isomorphism test for the class of all graphs of rank width at most k. A consequence of our result is the first polynomial time canonization algorithm for graphs of bounded rank width. Our second main result addresses an open problem in descriptive complexity theory: we show that fixed-point logic with counting expresses precisely the polynomial time properties of graphs of bounded rank width.


Author(s):  
Paloma T. Lima ◽  
Erik Jan van Leeuwen ◽  
Marieke van der Wegen

2011 ◽  
Vol 39 (6) ◽  
pp. 452-456 ◽  
Author(s):  
M. Laurent ◽  
A. Varvitsiotis
Keyword(s):  

2018 ◽  
Vol 27 (5) ◽  
pp. 763-773
Author(s):  
AGELOS GEORGAKOPOULOS ◽  
STEPHAN WAGNER
Keyword(s):  

We construct minor-closed addable families of graphs that are subcritical and contain all planar graphs. This contradicts (one direction of) a well-known conjecture of Noy.


1999 ◽  
Vol Vol. 3 no. 4 ◽  
Author(s):  
Andrzej Proskurowski ◽  
Jan Arne Telle

International audience We introduce q-proper interval graphs as interval graphs with interval models in which no interval is properly contained in more than q other intervals, and also provide a forbidden induced subgraph characterization of this class of graphs. We initiate a graph-theoretic study of subgraphs of q-proper interval graphs with maximum clique size k+1 and give an equivalent characterization of these graphs by restricted path-decomposition. By allowing the parameter q to vary from 0 to k, we obtain a nested hierarchy of graph families, from graphs of bandwidth at most k to graphs of pathwidth at most k. Allowing both parameters to vary, we have an infinite lattice of graph classes ordered by containment.


Sign in / Sign up

Export Citation Format

Share Document