Circular motion of test particle around wormhole represented by exponential metric

2022 ◽  
pp. 100946
Author(s):  
Bobur Turimov ◽  
Yunus Turaev ◽  
Bobomurat Ahmedov ◽  
Zdeněk Stuchlík
2018 ◽  
Vol 14 (1) ◽  
pp. 1
Author(s):  
Prof. Dr. Jamal Aziz Mehdi

The biological objectives of root canal treatment have not changed over the recentdecades, but the methods to attain these goals have been greatly modified. Theintroduction of NiTi rotary files represents a major leap in the development ofendodontic instruments, with a wide variety of sophisticated instruments presentlyavailable (1, 2).Whatever their modification or improvement, all of these instruments have onething in common: they consist of a metal core with some type of rotating blade thatmachines the canal with a circular motion using flutes to carry the dentin chips anddebris coronally. Consequently, all rotary NiTi files will machine the root canal to acylindrical bore with a circular cross-section if the clinician applies them in a strictboring manner


2018 ◽  
Vol 7 (1) ◽  
Author(s):  
Alfido Fauzy Zakaria ◽  
Bambang Supriadi ◽  
Trapsilo Prihandono

One branch of physics is mechanics. Based on interviews to Senior High School teacher in Jember, mechanics is difficult to learn. The eksternals factor this chapter is dificult to learn is learning Resources. The learning Resources are often less contextuall with around the phenomenon of students. The contextuall learning Resources in the Jember Regency is study of kynematics and dynamics in the traffic of Rembangan Tourism. From this experiment, we get data can be used as a learning resources chapter uniform rectilinear motion, decelerated uniform rectilinear motion, accelerated uniform rectilinear motion, Newton’s Law, and circular motion.


Author(s):  
Peter Mann

This chapter discusses the importance of circular motion and rotations, whose applications to chemical systems are plentiful. Circular motion is the book’s first example of a special case of motion using the laws developed in previous chapters. The chapter begins with the basic definitions of circular motion; as uniform rotation around a principle axis is much easier to consider, it is the focus of this chapter and is used to develop some key ideas. The chapter discusses angular displacement, angular velocity, angular momentum, torque, rigid bodies, orbital and spin momenta, inertia tensors and non-inertial frames and explores fictitious forces as well as transformations in rotating frames.


Author(s):  
David M. Wittman

General relativity explains much more than the spacetime around static spherical masses.We briefly assess general relativity in the larger context of physical theories, then explore various general relativistic effects that have no Newtonian analog. First, source massmotion gives rise to gravitomagnetic effects on test particles.These effects also depend on the velocity of the test particle, which has substantial implications for orbits around black holes to be further explored in Chapter 20. Second, any changes in the sourcemass ripple outward as gravitational waves, and we tell the century‐long story from the prediction of gravitational waves to their first direct detection in 2015. Third, the deflection of light by galaxies and clusters of galaxies allows us to map the amount and distribution of mass in the universe in astonishing detail. Finally, general relativity enables modeling the universe as a whole, and we explore the resulting Big Bang cosmology.


2020 ◽  
Vol 55 (4) ◽  
pp. 045002
Author(s):  
Bruno Hartmann ◽  
Burkhard Priemer
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document