Hierarchical community detection with applications to real-world network analysis

2013 ◽  
Vol 83 ◽  
pp. 20-38 ◽  
Author(s):  
Bo Yang ◽  
Jin Di ◽  
Jiming Liu ◽  
Dayou Liu
2021 ◽  
Vol 30 (4) ◽  
pp. 441-455
Author(s):  
Rinat Aynulin ◽  
◽  
Pavel Chebotarev ◽  
◽  

Proximity measures on graphs are extensively used for solving various problems in network analysis, including community detection. Previous studies have considered proximity measures mainly for networks without attributes. However, attribute information, node attributes in particular, allows a more in-depth exploration of the network structure. This paper extends the definition of a number of proximity measures to the case of attributed networks. To take node attributes into account, attribute similarity is embedded into the adjacency matrix. Obtained attribute-aware proximity measures are numerically studied in the context of community detection in real-world networks.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Natarajan Meghanathan

AbstractWe define a bridge node to be a node whose neighbor nodes are sparsely connected to each other and are likely to be part of different components if the node is removed from the network. We propose a computationally light neighborhood-based bridge node centrality (NBNC) tuple that could be used to identify the bridge nodes of a network as well as rank the nodes in a network on the basis of their topological position to function as bridge nodes. The NBNC tuple for a node is asynchronously computed on the basis of the neighborhood graph of the node that comprises of the neighbors of the node as vertices and the links connecting the neighbors as edges. The NBNC tuple for a node has three entries: the number of components in the neighborhood graph of the node, the algebraic connectivity ratio of the neighborhood graph of the node and the number of neighbors of the node. We analyze a suite of 60 complex real-world networks and evaluate the computational lightness, effectiveness, efficiency/accuracy and uniqueness of the NBNC tuple vis-a-vis the existing bridgeness related centrality metrics and the Louvain community detection algorithm.


Entropy ◽  
2021 ◽  
Vol 23 (6) ◽  
pp. 680
Author(s):  
Hanyang Lin ◽  
Yongzhao Zhan ◽  
Zizheng Zhao ◽  
Yuzhong Chen ◽  
Chen Dong

There is a wealth of information in real-world social networks. In addition to the topology information, the vertices or edges of a social network often have attributes, with many of the overlapping vertices belonging to several communities simultaneously. It is challenging to fully utilize the additional attribute information to detect overlapping communities. In this paper, we first propose an overlapping community detection algorithm based on an augmented attribute graph. An improved weight adjustment strategy for attributes is embedded in the algorithm to help detect overlapping communities more accurately. Second, we enhance the algorithm to automatically determine the number of communities by a node-density-based fuzzy k-medoids process. Extensive experiments on both synthetic and real-world datasets demonstrate that the proposed algorithms can effectively detect overlapping communities with fewer parameters compared to the baseline methods.


2021 ◽  
Vol 2 (1) ◽  
pp. 113-139
Author(s):  
Dimitrios Tsiotas ◽  
Thomas Krabokoukis ◽  
Serafeim Polyzos

Within the context that tourism-seasonality is a composite phenomenon described by temporal, geographical, and socio-economic aspects, this article develops a multilevel method for studying time patterns of tourism-seasonality in conjunction with its spatial dimension and socio-economic dimension. The study aims to classify the temporal patterns of seasonality into regional groups and to configure distinguishable seasonal profiles facilitating tourism policy and development. The study applies a multilevel pattern recognition approach incorporating time-series assessment, correlation, and complex network analysis based on community detection with the use of the modularity optimization algorithm, on data of overnight-stays recorded for the time-period 1998–2018. The analysis reveals four groups of seasonality, which are described by distinct seasonal, geographical, and socio-economic profiles. Overall, the analysis supports multidisciplinary and synthetic research in the modeling of tourism research and promotes complex network analysis in the study of socio-economic systems, by providing insights into the physical conceptualization that the community detection based on the modularity optimization algorithm can enjoy to the real-world applications.


Entropy ◽  
2021 ◽  
Vol 23 (5) ◽  
pp. 497
Author(s):  
Huan Li ◽  
Ruisheng Zhang ◽  
Zhili Zhao ◽  
Xin Liu

Community detection is of great significance in understanding the structure of the network. Label propagation algorithm (LPA) is a classical and effective method, but it has the problems of randomness and instability. An improved label propagation algorithm named LPA-MNI is proposed in this study by combining the modularity function and node importance with the original LPA. LPA-MNI first identify the initial communities according to the value of modularity. Subsequently, the label propagation is used to cluster the remaining nodes that have not been assigned to initial communities. Meanwhile, node importance is used to improve the node order of label updating and the mechanism of label selecting when multiple labels are contained by the maximum number of nodes. Extensive experiments are performed on twelve real-world networks and eight groups of synthetic networks, and the results show that LPA-MNI has better accuracy, higher modularity, and more reasonable community numbers when compared with other six algorithms. In addition, LPA-MNI is shown to be more robust than the traditional LPA algorithm.


2017 ◽  
Vol 31 (15) ◽  
pp. 1750121 ◽  
Author(s):  
Fang Hu ◽  
Youze Zhu ◽  
Yuan Shi ◽  
Jianchao Cai ◽  
Luogeng Chen ◽  
...  

In this paper, based on Walktrap algorithm with the idea of random walk, and by selecting the neighbor communities, introducing improved signed probabilistic mixture (SPM) model and considering the edges within the community as positive links and the edges between the communities as negative links, a novel algorithm Walktrap-SPM for detecting overlapping community is proposed. This algorithm not only can identify the overlapping communities, but also can greatly increase the objectivity and accuracy of the results. In order to verify the accuracy, the performance of this algorithm is tested on several representative real-world networks and a set of computer-generated networks based on LFR benchmark. The experimental results indicate that this algorithm can identify the communities accurately, and it is more suitable for overlapping community detection. Compared with Walktrap, SPM and LMF algorithms, the presented algorithm can acquire higher values of modularity and NMI. Moreover, this new algorithm has faster running time than SPM and LMF algorithms.


2018 ◽  
Vol 29 (01) ◽  
pp. 1850003 ◽  
Author(s):  
Chuang Liu ◽  
Linan Fan ◽  
Zhou Liu ◽  
Xiang Dai ◽  
Jiamei Xu ◽  
...  

Community detection in complex networks is a key problem of network analysis. In this paper, a new membrane algorithm is proposed to solve the community detection in complex networks. The proposed algorithm is based on membrane systems, which consists of objects, reaction rules, and a membrane structure. Each object represents a candidate partition of a complex network, and the quality of objects is evaluated according to network modularity. The reaction rules include evolutionary rules and communication rules. Evolutionary rules are responsible for improving the quality of objects, which employ the differential evolutionary algorithm to evolve objects. Communication rules implement the information exchanged among membranes. Finally, the proposed algorithm is evaluated on synthetic, real-world networks with real partitions known and the large-scaled networks with real partitions unknown. The experimental results indicate the superior performance of the proposed algorithm in comparison with other experimental algorithms.


Author(s):  
Nicole Belinda Dillen ◽  
Aruna Chakraborty

One of the most important aspects of social network analysis is community detection, which is used to categorize related individuals in a social network into groups or communities. The approach is quite similar to graph partitioning, and in fact, most detection algorithms rely on concepts from graph theory and sociology. The aim of this chapter is to aid a novice in the field of community detection by providing a wider perspective on some of the different detection algorithms available, including the more recent developments in this field. Five popular algorithms have been studied and explained, and a recent novel approach that was proposed by the authors has also been included. The chapter concludes by highlighting areas suitable for further research, specifically targeting overlapping community detection algorithms.


Sign in / Sign up

Export Citation Format

Share Document