scholarly journals Identifying reproducible individual differences in childhood functional brain networks: An ABCD study

2019 ◽  
Vol 40 ◽  
pp. 100706 ◽  
Author(s):  
Scott Marek ◽  
Brenden Tervo-Clemmens ◽  
Ashley N. Nielsen ◽  
Muriah D. Wheelock ◽  
Ryland L. Miller ◽  
...  
2019 ◽  
Vol 30 (3) ◽  
pp. 1087-1102
Author(s):  
Shi Gu ◽  
Cedric Huchuan Xia ◽  
Rastko Ciric ◽  
Tyler M Moore ◽  
Ruben C Gur ◽  
...  

AbstractAt rest, human brain functional networks display striking modular architecture in which coherent clusters of brain regions are activated. The modular account of brain function is pervasive, reliable, and reproducible. Yet, a complementary perspective posits a core–periphery or rich-club account of brain function, where hubs are densely interconnected with one another, allowing for integrative processing. Unifying these two perspectives has remained difficult due to the fact that the methodological tools to identify modules are entirely distinct from the methodological tools to identify core–periphery structure. Here, we leverage a recently-developed model-based approach—the weighted stochastic block model—that simultaneously uncovers modular and core–periphery structure, and we apply it to functional magnetic resonance imaging data acquired at rest in 872 youth of the Philadelphia Neurodevelopmental Cohort. We demonstrate that functional brain networks display rich mesoscale organization beyond that sought by modularity maximization techniques. Moreover, we show that this mesoscale organization changes appreciably over the course of neurodevelopment, and that individual differences in this organization predict individual differences in cognition more accurately than module organization alone. Broadly, our study provides a unified assessment of modular and core–periphery structure in functional brain networks, offering novel insights into their development and implications for behavior.


PLoS ONE ◽  
2020 ◽  
Vol 15 (12) ◽  
pp. e0242985
Author(s):  
Howard Muchen Hsu ◽  
Zai-Fu Yao ◽  
Kai Hwang ◽  
Shulan Hsieh

The ability to inhibit motor response is crucial for daily activities. However, whether brain networks connecting spatially distinct brain regions can explain individual differences in motor inhibition is not known. Therefore, we took a graph-theoretic perspective to examine the relationship between the properties of topological organization in functional brain networks and motor inhibition. We analyzed data from 141 healthy adults aged 20 to 78, who underwent resting-state functional magnetic resonance imaging and performed a stop-signal task along with neuropsychological assessments outside the scanner. The graph-theoretic properties of 17 functional brain networks were estimated, including within-network connectivity and between-network connectivity. We employed multiple linear regression to examine how these graph-theoretical properties were associated with motor inhibition. The results showed that between-network connectivity of the salient ventral attention network and dorsal attention network explained the highest and second highest variance of individual differences in motor inhibition. In addition, we also found those two networks span over brain regions in the frontal-cingulate-parietal network, suggesting that these network interactions are also important to motor inhibition.


2014 ◽  
Vol 112 (8) ◽  
pp. 1838-1848 ◽  
Author(s):  
Kelly Anne Barnes ◽  
Kevin M. Anderson ◽  
Mark Plitt ◽  
Alex Martin

When humans are provided with ample time to make a decision, individual differences in strategy emerge. Using an adaptation of a well-studied decision making paradigm, motion direction discrimination, we probed the neural basis of individual differences in strategy. We tested whether strategies emerged from moment-to-moment reconfiguration of functional brain networks involved in decision making with task-evoked functional MRI (fMRI) and whether intrinsic properties of functional brain networks, measured at rest with functional connectivity MRI (fcMRI), were associated with strategy use. We found that human participants reliably selected one of two strategies across 2 days of task performance, either continuously accumulating evidence or waiting for task difficulty to decrease. Individual differences in decision strategy were predicted both by the degree of task-evoked activation of decision-related brain regions and by the strength of pretask correlated spontaneous brain activity. These results suggest that spontaneous brain activity constrains strategy selection on perceptual decisions.


2021 ◽  
Author(s):  
Ally Dworetsky ◽  
Benjamin A Seitzman ◽  
Babatunde Adeyemo ◽  
Derek M Smith ◽  
Steven E Petersen ◽  
...  

The cortex has a characteristic layout with specialized functional areas forming distributed large-scale networks. However, substantial work shows striking variation in this organization across people, which relates to differences in behavior. While a dominant assumption is that cortical 'variants' represent boundary shifts in the borders between regions, here we show that variants can also occur at a distance from their typical position, forming ectopic intrusions. Both forms of variants are common across individuals, but the forms differ in their location, network linkages, and activations during tasks. Sub-groups of individuals share similar variant properties, but sub-grouping on the two variant forms appears independent. This work argues that individual differences in brain organization commonly occur in two dissociable forms, border shifts and ectopic intrusions, that must be separately accounted for in the analysis of cortical systems across people. This work expands our knowledge of cortical variation in humans and helps reconceptualize the discussion of how cortical systems variability arises and links to individual differences in behavior.


Sign in / Sign up

Export Citation Format

Share Document