Moisture-driven changes in the sensitivity of the radial growth of Picea crassifolia to temperature, northeastern Tibetan Plateau

2020 ◽  
Vol 64 ◽  
pp. 125761
Author(s):  
Wenqi Song ◽  
Changcheng Mu ◽  
Yuandong Zhang ◽  
Xu Zhang ◽  
Zongshan Li ◽  
...  
2016 ◽  
Vol 48 (3) ◽  
pp. 461-468 ◽  
Author(s):  
Xiaoming Lu ◽  
Ru Huang ◽  
Yafeng Wang ◽  
Shalik Ram Sigdel ◽  
Binod Dawadi ◽  
...  

Atmosphere ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 416
Author(s):  
Youping Chen ◽  
Feng Chen ◽  
Heli Zhang

Hydroclimatic conditions and related water resources change in the Tibetan Plateau is one of the main concerns for future sustainable development in China. This study presents a 254-year precipitation reconstruction from August of the previous year to June of the current year for the northeastern Tibetan Plateau based on tree-ring width data of tree-ring cores of Picea crassifolia from three sampling sites. The precipitation reconstruction explained 51.4% of the variance in instrumental precipitation during the calibration period 1958–2013. Dry periods with precipitation below the 254-year average value occurred during 1848–1865, 1873–1887, 1898–1923, and 1989–2003, and wet periods (precipitation above the mean) occurred during 1769–1785, 1798–1833, 1924–1938, 1957–1968, and 2004–2013. Spatial correlation analyses with the precipitation gridded dataset showed that our reconstruction contains some strong regional-scale precipitation signals for the upper Yellow River Basin. Our precipitation reconstruction also agreed in general with other dendroclimatic precipitation reconstructions from surrounding regions. In addition, reconstructed precipitation changes were consistent with the streamflow variation of the Yellow River.


Forests ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 1015
Author(s):  
Xuan Wu ◽  
Liang Jiao ◽  
Dashi Du ◽  
Changliang Qi ◽  
Ruhong Xue

It is important to explore the responses of radial tree growth in different regions to understand growth patterns and to enhance forest management and protection with climate change. We constructed tree ring width chronologies of Picea crassifolia from different regions of the Qilian Mountains of northwest China. We used Pearson correlation and moving correlation to analyze the main climate factors limiting radial growth of trees and the temporal stability of the growth–climate relationship, while spatial correlation is the result of further testing the first two terms in space. The conclusions were as follows: (1) Radial growth had different trends, showing an increasing followed by a decreasing trend in the central region, a continuously increasing trend in the eastern region, and a gradually decreasing trend in the isolated mountain. (2) Radial tree growth in the central region and isolated mountains was constrained by drought stress, and tree growth in the central region was significantly negatively correlated with growing season temperature. Isolated mountains showed a significant negative correlation with mean minimum of growing season and a significant positive correlation with total precipitation. (3) Temporal dynamic responses of radial growth in the central region to the temperatures and SPEI (the standardized precipitation evapotranspiration index) in the growing season were unstable, the isolated mountains to total precipitation was unstable, and that to SPEI was stable. The results of this study suggest that scientific management and maintenance plans of the forest ecosystem should be developed according to the response and growth patterns of the Qinghai spruce to climate change in different regions of the Qilian Mountains.


2021 ◽  
Vol 188 ◽  
pp. 104451
Author(s):  
Guangyin Hu ◽  
Zhibao Dong ◽  
Zhengcai Zhang ◽  
Linhai Yang ◽  
Lewei Hao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document