scholarly journals Comparison of the Radial Growth Response of Picea crassifolia to Climate Change in Different Regions of the Central and Eastern Qilian Mountains

Forests ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 1015
Author(s):  
Xuan Wu ◽  
Liang Jiao ◽  
Dashi Du ◽  
Changliang Qi ◽  
Ruhong Xue

It is important to explore the responses of radial tree growth in different regions to understand growth patterns and to enhance forest management and protection with climate change. We constructed tree ring width chronologies of Picea crassifolia from different regions of the Qilian Mountains of northwest China. We used Pearson correlation and moving correlation to analyze the main climate factors limiting radial growth of trees and the temporal stability of the growth–climate relationship, while spatial correlation is the result of further testing the first two terms in space. The conclusions were as follows: (1) Radial growth had different trends, showing an increasing followed by a decreasing trend in the central region, a continuously increasing trend in the eastern region, and a gradually decreasing trend in the isolated mountain. (2) Radial tree growth in the central region and isolated mountains was constrained by drought stress, and tree growth in the central region was significantly negatively correlated with growing season temperature. Isolated mountains showed a significant negative correlation with mean minimum of growing season and a significant positive correlation with total precipitation. (3) Temporal dynamic responses of radial growth in the central region to the temperatures and SPEI (the standardized precipitation evapotranspiration index) in the growing season were unstable, the isolated mountains to total precipitation was unstable, and that to SPEI was stable. The results of this study suggest that scientific management and maintenance plans of the forest ecosystem should be developed according to the response and growth patterns of the Qinghai spruce to climate change in different regions of the Qilian Mountains.

Forests ◽  
2019 ◽  
Vol 10 (9) ◽  
pp. 817 ◽  
Author(s):  
Lingnan Zhang ◽  
Hui Li ◽  
Yilin Ran ◽  
Keyi Wang ◽  
Xiaomin Zeng ◽  
...  

Increasing evidence suggests that extreme droughts cause more frequent tree growth reduction. To understand the consequences of these droughts better, this study used tree-ring cores from nine sites to investigate how moisture and altitudinal gradients affect the radial growth of Picea crassifolia Kom., a common species in the Qilian Mountains in northwest China. The total annual precipitation and mean annual temperature in the eastern region were higher than those in the western region of the Qilian Mountains. The trees in the eastern region showed stronger resistance to drought than those in the west, as they had a smaller difference in radial growth between drought disturbance and pre-drought disturbance. At the same time, the trees in the east showed weaker ability to recover from drought, as they had a subtle difference in radial growth between post-drought disturbance and drought disturbance. Furthermore, the trees in the east also showed weaker relative resilience to drought, as they had a small difference in radial growth between post-drought and drought disturbance weighted by growth in pre-drought disturbance. For trees below 3000 m a.s.l., trees with high resistance capacity usually had low recovery capacity and low relative resilience capacity. Trees at higher altitudes also showed stronger resistance to drought and weaker ability to recover from drought after a drought event than those at lower altitudes in the middle of the Qilian Mountains. Trees at lower altitudes in the middle of the Qilian Mountains had more difficulties recovering from more severe and longer drought events. In the context of global warming, trees in the western region and at lower altitudes should be given special attention and protection in forest management to enhance their resistance to extreme droughts.


2017 ◽  
Vol 44 ◽  
pp. 76-83 ◽  
Author(s):  
Quanyan Tian ◽  
Zhibin He ◽  
Shengchun Xiao ◽  
Xiaomei Peng ◽  
Aijun Ding ◽  
...  

Forests ◽  
2020 ◽  
Vol 11 (11) ◽  
pp. 1188
Author(s):  
Shu Fang ◽  
Zhibin He

Mountain ecosystems are significantly affected by climate change. However, due to slow vegetation growth in mountain ecosystems, climate-induced vegetation shifts are difficult to detect with low-definition remote sensing images. We used high-definition remote sensing data to identify responses to climate change in a typical Picea crassifolia Kom. forest in the Qilian Mountains, China, from 1968 to 2017. We found that: (1) Picea crassifolia Kom. forests were distributed in small patches or strips on shaded and partly shaded slopes at altitudes of 2700–3250 m, (2) the number, area, and concentration of forest patches have been increasing from 1968 to 2017 in relatively flat and partly sunny areas, but the rate of area increase and ascend of the tree line slowed after 2008, and (3) the establishment of plantation forests may be one of the reasons for the changes. The scale of detected change in Picea crassifolia Kom.forest was about or slightly below 30 m, indicating that monitoring with high-resolution remote sensing data will improve detectability and accuracy.


2013 ◽  
Vol 15 (4) ◽  
pp. 310-319 ◽  
Author(s):  
Jin-Mei Xu ◽  
Fu-Cheng Bao ◽  
Jian-Xiong Lv ◽  
Rong-Feng Huang ◽  
You-Ke Zhao ◽  
...  

Trees ◽  
2016 ◽  
Vol 31 (2) ◽  
pp. 455-465 ◽  
Author(s):  
Lingnan Zhang ◽  
Yuan Jiang ◽  
Shoudong Zhao ◽  
Xinyu Kang ◽  
Wentao Zhang ◽  
...  

Forests ◽  
2019 ◽  
Vol 10 (9) ◽  
pp. 712
Author(s):  
Bin Wang ◽  
Pengtao Yu ◽  
Lei Zhang ◽  
Yanhui Wang ◽  
Yipeng Yu ◽  
...  

Tree growth strongly responds to climate change, especially in semiarid mountainous areas. In recent decades, China has experienced dramatic climate warming; however, after 2000 the warming trend substantially slowed (indicative of a warming hiatus) in the semiarid areas of China. The responses of tree growth in respect to elevation during this warming hiatus are poorly understood. Here, we present the responses of Qinghai spruce (Picea crassifolia Kom.) growth to warming using a stand-total sampling strategy along an elevational gradient spanning seven plots in the Qilian Mountains. The results indicate that tree growth experienced a decreasing trend from 1980 to 2000 at all elevations, and the decreasing trend slowed with increasing elevation (i.e., a downward trend from −10.73 mm2 year−1 of the basal area increment (BAI) at 2800 m to −3.48 mm2 year−1 of BAI at 3300 m), with an overall standard deviation (STD) of 2.48 mm2 year−1. However, this trend reversed to an increasing trend after 2000, and the increasing trends at the low (2550–2900 m, 0.27–5.07 mm2 year−1 of BAI, p > 0.23) and middle (3000–3180 m, 2.08–2.46 mm2 year−1 of BAI, p > 0.2) elevations were much weaker than at high elevations (3300 m, 23.56 mm2 year−1 of BAI, p < 0.01). From 2000–2013, the difference in tree growth with elevation was much greater than in other sub-periods, with an overall STD of 7.69 mm2 year−1. The stronger drought conditions caused by dramatic climate warming dominated the decreased tree growth during 1980–2000, and the water deficit in the 2550–3180 m range was stronger than at 3300 m, which explained the serious negative trend in tree growth at low and middle elevations. After 2000, the warming hiatus was accompanied by increases in precipitation, which formed a wetting–warming climate. Although moisture availability was still a dominant limiting factor of tree growth, the relieved drought pressure might be the main reason for the recent recovery in the tree growth at middle and low elevations. Moreover, the increasing temperature significantly promoted tree growth at 3300 m, with a correlation coefficient between the temperature and BAI of 0.77 (p < 0.01). Our results implied that climate change drove different growth patterns at different elevations, which sheds light into forest management under the estimated future climate warming: those trees in low and middle elevations should be paid more attention with respect to maintaining tree growth, while high elevations could be a more suitable habitat for this species.


2021 ◽  
Vol 13 (2) ◽  
pp. 286
Author(s):  
Cancan Qiao ◽  
Shi Shen ◽  
Changxiu Cheng ◽  
Junxu Wu ◽  
Duo Jia ◽  
...  

The vulnerability of vegetation ecosystems and hydrological systems in high-altitude areas makes their phenology more sensitive and their response to climate change more intense. The Qilian Mountains, an important geographic unit located in the northeastern Tibetan Plateau (TP), has experienced the more significant increases in temperature and precipitation in the past few decades than most areas of the TP. However, under such intense climate change, the temporal and spatial differences in phenology in the Qilian Mountains are not clear. This study explored the spatial and temporal heterogeneity of phenology in the Qilian Mountains from 1982 to 2014 and its response to three temperature indicators, including the mean daily temperature (Tmean), mean daily daytime temperature (Tmax), and mean daily nighttime temperature (Tmin). The results showed that (1) as the altitude rose from southeast to northwest, the multiyear mean of the start of the growing season (SOS) was gradually delayed mainly from 120 to 190 days, the multiyear mean of the end of the growing season (EOS) as a whole was advanced (from 290 to 260 days), and the multiyear mean of the length of the growing season (LGS) was gradually shortened (from 150 to 80 days). (2) In general, there was an advanced trend in the annual average SOS (0.2 days per decade), a delayed trend in the annual average EOS (0.15 days per decade), and an extended trend in the annual average LGS (0.36 days per decade) over the study period. However, there has been no significant phenological trend in recent years, especially for the SOS after 2000 and the EOS and LGS after 2003. (3) Higher preseason temperatures led to an advanced SOS and a delayed EOS at the regional scale. Moreover, the SOS and EOS were more triggered by Tmax than Tmin and Tmean. The LGS was significantly positively correlated with annual mean temperature (r = −0.82, p < 0.01).


2015 ◽  
Vol 6 (1) ◽  
pp. 245-265 ◽  
Author(s):  
U. Schickhoff ◽  
M. Bobrowski ◽  
J. Böhner ◽  
B. Bürzle ◽  
R. P. Chaudhary ◽  
...  

Abstract. Climate warming is expected to induce treelines to advance to higher elevations. Empirical studies in diverse mountain ranges, however, give evidence of both advancing alpine treelines and rather insignificant responses. The inconsistency of findings suggests distinct differences in the sensitivity of global treelines to recent climate change. It is still unclear where Himalayan treeline ecotones are located along the response gradient from rapid dynamics to apparently complete inertia. This paper reviews the current state of knowledge regarding sensitivity and response of Himalayan treelines to climate warming, based on extensive field observations, published results in the widely scattered literature, and novel data from ongoing research of the present authors. Several sensitivity indicators such as treeline type, treeline form, seed-based regeneration, and growth patterns are evaluated. Since most Himalayan treelines are anthropogenically depressed, observed advances are largely the result of land use change. Near-natural treelines are usually krummholz treelines, which are relatively unresponsive to climate change. Nevertheless, intense recruitment of treeline trees suggests a great potential for future treeline advance. Competitive abilities of seedlings within krummholz thickets and dwarf scrub heaths will be a major source of variation in treeline dynamics. Tree growth–climate relationships show mature treeline trees to be responsive to temperature change, in particular in winter and pre-monsoon seasons. High pre-monsoon temperature trends will most likely drive tree growth performance in the western and central Himalaya. Ecological niche modelling suggests that bioclimatic conditions for a range expansion of treeline trees will be created during coming decades.


Sign in / Sign up

Export Citation Format

Share Document