Comparison of sonocrystallization and seeding as pretreatment approaches for scale control to improve heat transfer in thermal brine concentrator

Desalination ◽  
2022 ◽  
Vol 523 ◽  
pp. 115444
Author(s):  
V.V. Banakar ◽  
S.S. Sabnis ◽  
P.R. Gogate ◽  
A. Raha ◽  
Saurabh ◽  
...  
2021 ◽  
Vol 11 (19) ◽  
pp. 9261
Author(s):  
Yun-Seok Choi ◽  
Youn-Jea Kim

As electrical devices become smaller, it is essential to maintain operating temperature for safety and durability. Therefore, there are efforts to improve heat transfer performance under various conditions, such as using extended surfaces and nanofluids. Among them, cooling methods using ferrofluid are drawing the attention of many researchers. This fluid can control the movement of the fluid in magnetic fields. In this study, the heat transfer performance of a fin-tube heat exchanger, using ferrofluid as a coolant, was analyzed when external magnetic fields were applied. Permanent magnets were placed outside the heat exchanger. When the magnetic fields were applied, a change in the thermal boundary layer was observed. It also formed vortexes, which affected the formation of flow patterns. The vortex causes energy exchanges in the flow field, activating thermal diffusion and improving heat transfer. A numerical analysis was used to observe the cooling performance of heat exchangers, as the strength and number of the external magnetic fields were varying. VGs (vortex generators) were also installed to create vortex fields. A convective heat transfer coefficient was calculated to determine the heat transfer rate. In addition, the comparative analysis was performed with graphical results using contours of temperature and velocity.


2016 ◽  
Author(s):  
Edney Rejowski ◽  
Juliano Pallaoro de Souza ◽  
Rafael Bettini Rabello

Author(s):  
N. Manikanda Prabu ◽  
S. Nallusamy ◽  
G. Sureshkannan

Removal of heat generation is an important characteristic needs to be considered in electromechanical and electronic devices which improve the stability and feasibility of system. Despite numerous cooling methods, heat pipes are recent updating in research line. Heat pipes are one of the super conducting medium of heat energy and it is being used as an equipment to absorb more heat through phase change process of cooling medium circulated in it. It ensures the direct enhancement in heat transfer capacity and characteristics. Nowadays, improvement of the thermal performance in heat pipes getting up with various technologies, especially combination of heat pipe and Nano fluids. It has been experimentally practiced and various results are observed by previous researches that wick structure also a part of reason in improvement. The aim of this research work is to analyze the influence of wick material to improve heat transfer characteristics in heat pipes. In addition, combination of nano coated wick material with heat pipes is comparatively analyzed. From the final observed results it was found that, the best combination of wick material is supporting the better cooling requirements in electronic devices.


Author(s):  
Adam H. Richards ◽  
Robert E. Spall

A two-equation k-ω model is used to model a strongly heated, low-Mach number gas flowing upward in a vertical tube. Heating causes significant property variation and thickening of the viscous sublayer, consequently a fully developed flow does not evolve. Two-equation turbulence models generally perform poorly under such conditions. Consequently, in the present work, a near-wall two-equation heat transfer model is utilized in conjunction with the k-ω model to improve heat transfer predictions.


Author(s):  
Merrill A. Wilson ◽  
Michele Bullough ◽  
Kriston Brooks ◽  
Kurt Recknagle

Efficiency and emissions of advanced gas turbine power cycles can be improved by incorporating high-temperature ceramic heat exchangers. In cooperation with the DOE, a highly effective microchannel ceramic recuperator for a microturbine is under development. In this recuperator, the use of microchannel architecture will improve heat transfer and provide a more uniform temperature distribution. This will result in overall higher productivity per unit volume compared to conventional hardware. The use of ceramic for the recuperator will allow higher temperature operation than available in conventional microturbines. Based on a model for a typical microturbine, these changes may improve the overall system efficiency from about 27% to over 40%.


Sign in / Sign up

Export Citation Format

Share Document