Slot blot immunoassay as a tool for plasmid-encoded toxin detection in enteroaggregative Escherichia coli culture supernatants

2006 ◽  
Vol 55 (2) ◽  
pp. 101-106 ◽  
Author(s):  
Andréa Bernardes Vilhena-Costa ◽  
Roxane Maria Fontes Piazza ◽  
Júlia Mitico Nara ◽  
Luiz Rachid Trabulsi ◽  
Marina Baquerizo Martinez
2008 ◽  
Vol 190 (18) ◽  
pp. 6170-6177 ◽  
Author(s):  
Linda D. Rankin ◽  
Diane M. Bodenmiller ◽  
Jonathan D. Partridge ◽  
Shirley F. Nishino ◽  
Jim C. Spain ◽  
...  

ABSTRACT Chromatin immunoprecipitation and microarray (ChIP-chip) analysis showed that the nitric oxide (NO)-sensitive repressor NsrR from Escherichia coli binds in vivo to the promoters of the tynA and feaB genes. These genes encode the first two enzymes of a pathway that is required for the catabolism of phenylethylamine (PEA) and its hydroxylated derivatives tyramine and dopamine. Deletion of nsrR caused small increases in the activities of the tynA and feaB promoters in cultures grown on PEA. Overexpression of nsrR severely retarded growth on PEA and caused a marked repression of the tynA and feaB promoters. Both the growth defect and the promoter repression were reversed in the presence of a source of NO. These results are consistent with NsrR mediating repression of the tynA and feaB genes by binding (in an NO-sensitive fashion) to the sites identified by ChIP-chip. E. coli was shown to use 3-nitrotyramine as a nitrogen source for growth, conditions which partially induce the tynA and feaB promoters. Mutation of tynA (but not feaB) prevented growth on 3-nitrotyramine. Growth yields, mutant phenotypes, and analyses of culture supernatants suggested that 3-nitrotyramine is oxidized to 4-hydroxy-3-nitrophenylacetate, with growth occurring at the expense of the amino group of 3-nitrotyramine. Accordingly, enzyme assays showed that 3-nitrotyramine and its oxidation product (4-hydroxy-3-nitrophenylacetaldehyde) could be oxidized by the enzymes encoded by tynA and feaB, respectively. The results suggest that an additional physiological role of the PEA catabolic pathway is to metabolize nitroaromatic compounds that may accumulate in cells exposed to NO.


1996 ◽  
Vol 7 (3) ◽  
pp. 171-179
Author(s):  
Willem N.M. Hustinx ◽  
Barry J. Benaissa-Trouw ◽  
Ingeborg van der Tweel ◽  
Theo Harmsen ◽  
Jan Verhoef ◽  
...  

2020 ◽  
Vol 19 (1) ◽  
Author(s):  
Fabien Le Chevalier ◽  
Isabelle Correia ◽  
Lucrèce Matheron ◽  
Morgan Babin ◽  
Mireille Moutiez ◽  
...  

Abstract Background Cyclodipeptide oxidases (CDOs) are enzymes involved in the biosynthesis of 2,5-diketopiperazines, a class of naturally occurring compounds with a large range of pharmaceutical activities. CDOs belong to cyclodipeptide synthase (CDPS)-dependent pathways, in which they play an early role in the chemical diversification of cyclodipeptides by introducing Cα-Cβ dehydrogenations. Although the activities of more than 100 CDPSs have been determined, the activities of only a few CDOs have been characterized. Furthermore, the assessment of the CDO activities on chemically-synthesized cyclodipeptides has shown these enzymes to be relatively promiscuous, making them interesting tools for cyclodipeptide chemical diversification. The purpose of this study is to provide the first completely microbial toolkit for the efficient bioproduction of a variety of dehydrogenated 2,5-diketopiperazines. Results We mined genomes for CDOs encoded in biosynthetic gene clusters of CDPS-dependent pathways and selected several for characterization. We co-expressed each with their associated CDPS in the pathway using Escherichia coli as a chassis and showed that the cyclodipeptides and the dehydrogenated derivatives were produced in the culture supernatants. We determined the biological activities of the six novel CDOs by solving the chemical structures of the biologically produced dehydrogenated cyclodipeptides. Then, we assessed the six novel CDOs plus two previously characterized CDOs in combinatorial engineering experiments in E. coli. We co-expressed each of the eight CDOs with each of 18 CDPSs selected for the diversity of cyclodipeptides they synthesize. We detected more than 50 dehydrogenated cyclodipeptides and determined the best CDPS/CDO combinations to optimize the production of 23. Conclusions Our study establishes the usefulness of CDPS and CDO for the bioproduction of dehydrogenated cyclodipeptides. It constitutes the first step toward the bioproduction of more complex and diverse 2,5-diketopiperazines.


2000 ◽  
Vol 66 (11) ◽  
pp. 5024-5029 ◽  
Author(s):  
Luis A. Fernández ◽  
Isabel Sola ◽  
Luis Enjuanes ◽  
Víctor de Lorenzo

ABSTRACT A simple method for the nontoxic, specific, and efficient secretion of active single-chain Fv antibodies (scFvs) into the supernatants ofEscherichia coli cultures is reported. The method is based on the well-characterized hemolysin transport system (Hly) of E. coli that specifically secretes the target protein from the bacterial cytoplasm into the extracellular medium without a periplasmic intermediate. The culture media that accumulate these Hly-secreted scFv's can be used in a variety of immunoassays without purification. In addition, these culture supernatants are stable over long periods of time and can be handled basically as immune sera.


2006 ◽  
Vol 74 (3) ◽  
pp. 1809-1818 ◽  
Author(s):  
Narveen Jandu ◽  
Peter J. M. Ceponis ◽  
Seiichi Kato ◽  
Jason D. Riff ◽  
Derek M. McKay ◽  
...  

ABSTRACT Gamma interferon (IFN-γ) is a cytokine important to host defense which can signal through signal transducer and activator of transcription 1 (Stat1). Enterohemorrhagic Escherichia coli (EHEC) modulates host cell signal transduction to establish infection, and EHEC serotypes O113:H21 and O157:H7 both inhibit IFN-γ-induced Stat1 tyrosine phosphorylation in vitro. The aim of this study was to delineate both bacterial and host cell factors involved in the inhibition of Stat1 tyrosine phosphorylation. Human T84 colonic epithelial cells were challenged with direct infection, viable EHEC separated from T84 cells by a filter, sodium orthovanadate, isolated flagellin, bacterial culture supernatants, and conditioned medium treated with proteinase K, trypsin, or heat inactivation. Epithelial cells were then stimulated with IFN-γ and protein extracts were analyzed by immunoblotting. The data showed that IFN-γ-inducible Stat1 tyrosine phosphorylation was inhibited when EHEC adhered to T84 cells, but not by bacterial culture supernatants or bacteria separated from the epithelial monolayer. Conditioned medium from T84 cells infected with EHEC O157:H7 suppressed Stat1 activation, and this was not reversed by treatment with proteinases or heat inactivation. Use of pharmacological inhibitors showed that time-dependent bacterial, but not epithelial, protein synthesis was involved. Stat1 inhibition was also independent of bacterial flagellin, host proteasome activity, and protein tyrosine phosphatases. Infection led to altered IFN-γ receptor domain 1 subcellular distribution and decreased expression in cholesterol-enriched membrane microdomains. Thus, suppression of host cell IFN-γ signaling by production of a contact-dependent, soluble EHEC factor may represent a novel mechanism for this pathogen to evade the host immune system.


Microbiology ◽  
2003 ◽  
Vol 149 (3) ◽  
pp. 715-728 ◽  
Author(s):  
Kim R. Hardie ◽  
Clare Cooksley ◽  
Andrew D. Green ◽  
Klaus Winzer

Biochemistry ◽  
1994 ◽  
Vol 33 (22) ◽  
pp. 6911-6917 ◽  
Author(s):  
Michael J. Fath ◽  
Li Hong Zhang ◽  
John Rush ◽  
Roberto Kolter

Sign in / Sign up

Export Citation Format

Share Document