Wilms' tumor (WT1) (±KTS) variants decreases the progesterone secretion of bovine ovarian theca cells

2021 ◽  
Vol 74 ◽  
pp. 106521
Author(s):  
X. Wang ◽  
K. Meng ◽  
Y. Wang ◽  
Y. Zhao ◽  
F. Lin ◽  
...  
2009 ◽  
Vol 202 (3) ◽  
pp. 347-353 ◽  
Author(s):  
M F Machado ◽  
V M Portela ◽  
C A Price ◽  
I B Costa ◽  
P Ripamonte ◽  
...  

Fibroblast growth factor 17 (FGF17) is a member of the FGF8 subfamily that appears to be relevant to folliculogenesis and oogenesis, as the prototype member FGF8 is an oocyte-derived protein that signals to cumulus cells. FGF8 has structural and receptor-binding similarities to FGF17, whose expression in the ovary has not been reported. In this study, we demonstrate localization of FGF17 protein to the oocyte of preantral follicles, and to the oocyte and granulosa cells of antral follicles. Real-time PCR demonstrated the presence of mRNA in oocytes and, to a lesser extent, in granulosa and theca cells. FGF17 mRNA abundance was low in granulosa and theca cells from healthy follicles and increased significantly in atretic follicles. Addition of FSH or IGF-I to granulosa cells in vitro decreased FGF17 mRNA abundance, and treatment with FGF17 inhibited estradiol and progesterone secretion from granulosa cells in relation to control cultures without these additives. We conclude that FGF17 is a potential mediator of granulosa cell differentiation.


Reproduction ◽  
2015 ◽  
Vol 150 (1) ◽  
pp. 53-63 ◽  
Author(s):  
Mélodie Diot ◽  
Maxime Reverchon ◽  
Christelle Ramé ◽  
Yannick Baumard ◽  
Joëlle Dupont

In mammals, nicotinamide phosphoribosyltransferase (NAMPT) is an adipokine produced by adipose tissue that is found in intracellular and extracellular compartments. The intracellular form of NAMPT is a nicotinamide phosphoribosyltransferase, whereas the extracellular form is considered an adipokine. In humans, NAMPT regulates energy metabolism and reproductive functions, such as ovarian steroidogenesis. To date, no study has investigated the role of NAMPT in hen ovaries. We investigated whether NAMPT is present in hen ovarian follicles and its role in granulosa cells. Using RT-PCR, western blotting and immunocytochemistry, we detected mRNA transcripts and proteins related to NAMPT in theca and granulosa cells from pre-ovulatory follicles. Using RT-PCR, we demonstrated that mRNA NAMPT levels were higher in granulosa cells than they were in theca cells and that during follicle development, theca cell levels decreased, whereas levels remained unchanged in granulosa cells. NAMPT protein quantities were significantly higher in theca cells than they were in granulosa cells, but they were unchanged during follicular development. Plasma NAMPT levels, as determined by ELISA and immunoblotting, were significantly lower in adult hens than they were in juveniles. In vitro, treatment with human recombinant NAMPT (100 ng/ml, 48 h) halved basal and IGF1-induced progesterone secretion, and this was associated with a reduction in STAR and HSD3B protein levels and MAPK3/1 phosphorylation levels in granulosa cells. These effects were abolished by the addition of FK866, a specific inhibitor of NAMPT enzymatic activity. Moreover, NAMPT had no effect on granulosa cell proliferation. In conclusion, NAMPT is present in hen ovarian cells and inhibits progesterone production in granulosa cells.


1995 ◽  
Vol 145 (3) ◽  
pp. 491-500 ◽  
Author(s):  
J H M Wrathall ◽  
P G Knight

Abstract Primary monolayer cultures of bovine theca cells isolated from pooled ovarian follicles (3–10 mm diameter) were used to examine the effects of various granulosa cell-derived substances on basal and luteinizing hormone (LH)-induced androgen and progesterone secretion. After an overnight pretreatment period, cells were incubated with a range of treatments including LH, oestradiol-17β, inhibin, activin and follistatin. Media were collected after 48 h and assessment of androstenedione and progesterone secretion made by radioimmunoassay. Addition of LH (5–50 ng/ml) to the cells resulted in a dose-dependent stimulation of both androstenedione (2·5-to 3-fold rise; P<0·01) and progesterone (∼ 1·6-fold rise; P<0·001) production. Secretion of androstenedione was also raised (up to 5-fold; P<0·001) by addition of oestradiol-17β (0·3–300 ng/ml), whilst levels of the androgen in the presence of both LH (20 ng/ml) and oestradiol (300 ng/ml) were up to 12-fold higher (P<0·001) than control values. In contrast, oestradiol treatment inhibited by up to 50% both basal (P<0·001) and LH-stimulated (P<0·001) secretion of progesterone. Exposure of cells to purified bovine inhibin (5–125 ng/ml) consistently raised androstenedione secretion by up to 42% over basal levels (P<0·001). Inhibin also enhanced both LH-stimulated (∼20%; P<0·001) and oestradiol-stimulated (∼20%; P<0·05) secretion of androstenedione. In direct contrast, treatment of theca cells with human recombinant activin-A (1–50 ng/ml) inhibited both LH-stimulated (∼50%; P<0·001) and oestradiol-stimulated (∼30%; P<0·005) androstenedione secretion. Activin also reversed the positive effect of inhibin on basal (P<0·01), LH-stimulated (P<0·001) and oestradiol-stimulated (P<0·001) androstenedione secretion, though activin alone did not affect basal steroid output. Simultaneous addition of human recombinant follistatin reversed the inhibitory effects of activin on LH- and oestradiol-induced androstenedione secretion but did not modify the effects of inhibin. Follistatin alone did not alter either basal or LH-stimulated androstenedione output. Neither basal nor LH-stimulated secretion of progesterone were consistently affected by inhibin, activin or follistatin. As well as confirming the stimulatory effects of both LH and oestradiol on bovine thecal cell androgen production, these observations are indicative of opposing intrafollicular paracrine roles for granulosa cell-derived inhibin and activin in modulating thecal cell responses to gonadotrophins and steroids in the bovine ovary. Though inhibin and oestradiol had qualitatively similar effects in promoting thecal androgen secretion, the magnitude of the response to oestradiol was much greater. The results also support an intrafollicular role of follistatin as a binding protein capable of neutralizing the effect of activin, but not inhibin, on thecal androgen production. Journal of Endocrinology (1995) 145, 491–500


2006 ◽  
Vol 190 (1) ◽  
pp. 85-97 ◽  
Author(s):  
Lucie Tosca ◽  
Sabine Crochet ◽  
Pascal Ferré ◽  
Fabienne Foufelle ◽  
Sophie Tesseraud ◽  
...  

AMP-activated protein kinase (AMPK) is a fuel sensor in glucose, lipid, and cholesterol metabolism. Using RT-PCR and Western blot, AMPK subunits mRNAs (α1/2, β1/2, and γ1/2) and proteins (α1/2 and β1/2) can be found in the hen preovulatory follicles and precisely in both granulosa and theca cells. These preovulatory follicles are organized in a hierarchy according to their size (F5/6 to F1). The smallest number (F1) corresponds to the largest size and the latest mature stage. Phosphorylation of AMPKα on Thr172 and of acetyl-CoA carboxylase on Ser79 are higher in F4 and F3 than in F1 granulosa cells. However, they are not affected in F4–F1 theca cells. Treatment with 1 mM 5-amino-imidazole-4-carboxyamide-1-β-d-ribofuranoside (AICAR), an activator of AMPK, dose dependently increased phosphorylation of AMPKα on Thr172 in primary F3/4 and F1 granulosa cells. In the absence of FSH, AICAR treatment increased progesterone, P450 side chain cleavage and steroidogenic acute regulatory (StAR) production in both F3/4 and F1 granulosa cells. However, in the presence of FSH, AICAR treatment for 36 h increased progesterone secretion, StAR protein levels and reduced extracellular signal-regulated kinase (ERK)1/2 phosphorylation in F3/4 granulosa cells. Opposite data were observed in F1 granulosa cells. Adenovirus-mediated expression of dominant-negative AMPK totally restored the effects of AICAR on FSH-induced progesterone secretion, StAR protein production, and ERK1/2 phosphorylation in F3/4 and F1 granulosa cells. Using a specific inhibitor of ERK1/2 (U0126), we also showed that this kinase is a negative regulator of the FSH-induced progesterone secretion in F3/4 and F1 granulosa cells, suggesting that AICAR-mediated AMPK activation modifies FSH-induced progesterone secretion differently through the ERK1/2 signaling pathway in hen F3/4 and F1 granulosa cells.


2019 ◽  
Vol 86 (11) ◽  
pp. 1731-1740 ◽  
Author(s):  
Kai Meng ◽  
Xiaomei Wang ◽  
Yuanyuan He ◽  
Hengqin Wang ◽  
Xiaogang Xie ◽  
...  

JAMA ◽  
1966 ◽  
Vol 195 (12) ◽  
pp. 1005-1009 ◽  
Author(s):  
D. J. Fernbach
Keyword(s):  

Urology ◽  
2020 ◽  
Author(s):  
Alexandre Azevedo Ziomkowski ◽  
João Rafael Silva Simões Estrela ◽  
Nilo Jorge Carvalho Leão Barretto ◽  
Nilo César Leão Barretto

2007 ◽  
Vol 177 (4S) ◽  
pp. 305-305
Author(s):  
Shane Daley ◽  
Michael Ritchey ◽  
Robert Shamberger ◽  
Robert Sawin ◽  
Thomas Hamilton ◽  
...  

2007 ◽  
Vol 177 (4S) ◽  
pp. 304-305
Author(s):  
Jonathan C. Routh ◽  
Richard A. Ashley ◽  
Thomas J. Sebo ◽  
Christine M. Lohse ◽  
Douglas A. Husmann ◽  
...  

2004 ◽  
Vol 171 (4S) ◽  
pp. 150-151
Author(s):  
Thorsten Schlomm ◽  
Bastian Gunawan ◽  
Hans J. Schulten ◽  
Norbert Graf ◽  
Ivo Leuschner ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document