scholarly journals AMP-activated protein kinase activation modulates progesterone secretion in granulosa cells from hen preovulatory follicles

2006 ◽  
Vol 190 (1) ◽  
pp. 85-97 ◽  
Author(s):  
Lucie Tosca ◽  
Sabine Crochet ◽  
Pascal Ferré ◽  
Fabienne Foufelle ◽  
Sophie Tesseraud ◽  
...  

AMP-activated protein kinase (AMPK) is a fuel sensor in glucose, lipid, and cholesterol metabolism. Using RT-PCR and Western blot, AMPK subunits mRNAs (α1/2, β1/2, and γ1/2) and proteins (α1/2 and β1/2) can be found in the hen preovulatory follicles and precisely in both granulosa and theca cells. These preovulatory follicles are organized in a hierarchy according to their size (F5/6 to F1). The smallest number (F1) corresponds to the largest size and the latest mature stage. Phosphorylation of AMPKα on Thr172 and of acetyl-CoA carboxylase on Ser79 are higher in F4 and F3 than in F1 granulosa cells. However, they are not affected in F4–F1 theca cells. Treatment with 1 mM 5-amino-imidazole-4-carboxyamide-1-β-d-ribofuranoside (AICAR), an activator of AMPK, dose dependently increased phosphorylation of AMPKα on Thr172 in primary F3/4 and F1 granulosa cells. In the absence of FSH, AICAR treatment increased progesterone, P450 side chain cleavage and steroidogenic acute regulatory (StAR) production in both F3/4 and F1 granulosa cells. However, in the presence of FSH, AICAR treatment for 36 h increased progesterone secretion, StAR protein levels and reduced extracellular signal-regulated kinase (ERK)1/2 phosphorylation in F3/4 granulosa cells. Opposite data were observed in F1 granulosa cells. Adenovirus-mediated expression of dominant-negative AMPK totally restored the effects of AICAR on FSH-induced progesterone secretion, StAR protein production, and ERK1/2 phosphorylation in F3/4 and F1 granulosa cells. Using a specific inhibitor of ERK1/2 (U0126), we also showed that this kinase is a negative regulator of the FSH-induced progesterone secretion in F3/4 and F1 granulosa cells, suggesting that AICAR-mediated AMPK activation modifies FSH-induced progesterone secretion differently through the ERK1/2 signaling pathway in hen F3/4 and F1 granulosa cells.

Endocrinology ◽  
2005 ◽  
Vol 146 (10) ◽  
pp. 4500-4513 ◽  
Author(s):  
Lucie Tosca ◽  
Pascal Froment ◽  
Patricia Solnais ◽  
Pascal Ferré ◽  
Fabienne Foufelle ◽  
...  

The AMP-activated protein kinase (AMPK) is a major regulator of energy metabolism involved in fatty acid and cholesterol synthesis. In the ovary, cholesterol plays a key role in steroid production. We report the presence of AMPK in rat ovaries, and we have investigated its role in granulosa cells. We show using RT-PCR and Western blot that the mRNAs for the α1/2 and β1/2 subunits and the proteins are found in the ovaries. Immunohistochemistry localized the α1 AMPK subunit in granulosa cells, corpus luteum, and oocyte and less abundantly in theca cells. Treatment with 1 mm 5-amino-imidazole-4-carboxyamide-1-β-d-ribofuranoside (AICAR), an activator of AMPK, increased dose-dependent and time-dependent phosphorylation of AMPKα1 on Thr172 in primary granulosa cells. Simultaneously, phosphorylation of acetyl-coenzyme A carboxylase at Ser79 was also increased. AICAR treatment for 48 h halved progesterone secretion, 3β-HSD protein and mRNA levels, and phosphorylation of both basal MAPK ERK1/2 and p38 and in response to IGF-I and/or FSH in granulosa cells. AICAR treatment (1 mm) had no detectable effect on basal and FSH- and/or IGF-I-induced estradiol production and on granulosa cell proliferation or viability. Adenovirus-mediated expression of dominant negative AMPK totally abolished the effects of AICAR on progesterone secretion, 3β-HSD protein production, and MAPK ERK1/2 and p38 phosphorylation. Moreover, we showed using specific in- hibitors of ERK1/2 and p38 MAPK that the MAPK ERK1/2 and not p38 is involved in progesterone secretion and 3β-HSD expression, strongly suggesting that the activation of AMPK in response to AICAR reduces progesterone production through the MAPK ERK1/2 signaling pathway in rat granulosa cells.


Reproduction ◽  
2015 ◽  
Vol 150 (1) ◽  
pp. 53-63 ◽  
Author(s):  
Mélodie Diot ◽  
Maxime Reverchon ◽  
Christelle Ramé ◽  
Yannick Baumard ◽  
Joëlle Dupont

In mammals, nicotinamide phosphoribosyltransferase (NAMPT) is an adipokine produced by adipose tissue that is found in intracellular and extracellular compartments. The intracellular form of NAMPT is a nicotinamide phosphoribosyltransferase, whereas the extracellular form is considered an adipokine. In humans, NAMPT regulates energy metabolism and reproductive functions, such as ovarian steroidogenesis. To date, no study has investigated the role of NAMPT in hen ovaries. We investigated whether NAMPT is present in hen ovarian follicles and its role in granulosa cells. Using RT-PCR, western blotting and immunocytochemistry, we detected mRNA transcripts and proteins related to NAMPT in theca and granulosa cells from pre-ovulatory follicles. Using RT-PCR, we demonstrated that mRNA NAMPT levels were higher in granulosa cells than they were in theca cells and that during follicle development, theca cell levels decreased, whereas levels remained unchanged in granulosa cells. NAMPT protein quantities were significantly higher in theca cells than they were in granulosa cells, but they were unchanged during follicular development. Plasma NAMPT levels, as determined by ELISA and immunoblotting, were significantly lower in adult hens than they were in juveniles. In vitro, treatment with human recombinant NAMPT (100 ng/ml, 48 h) halved basal and IGF1-induced progesterone secretion, and this was associated with a reduction in STAR and HSD3B protein levels and MAPK3/1 phosphorylation levels in granulosa cells. These effects were abolished by the addition of FK866, a specific inhibitor of NAMPT enzymatic activity. Moreover, NAMPT had no effect on granulosa cell proliferation. In conclusion, NAMPT is present in hen ovarian cells and inhibits progesterone production in granulosa cells.


Animals ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 2027
Author(s):  
Na Sun ◽  
Yutong Zhang ◽  
Yaxin Hou ◽  
Yanyan Yi ◽  
Jianhua Guo ◽  
...  

Osthole (Ost) is an active constituent of Cnidium monnieri (L.) Cusson which possesses anti-inflammatory and anti-oxidative properties. It also has estrogen-like activity and can stimulate corticosterone secretion. The present study was aimed to check the role of Ost on progesterone (P4) secretion in cultured granulosa cells obtained from hen preovulatory follicles. Different concentrations (5, 2.5, and 1.25 µg/mL) of Ost was added to granulosa cells for 6, 12, 18, and 24 h to investigate the level of progesterone secretions using enzyme linked immunosorbent assay (ELISA). The results showed that progesterone secretion was significantly increased in cells treated with Ost at 2.5 μg/mL. Also, qRT-PCR showed that mRNA expression of steroidogenic acute regulatory protein (StAR) was significantly up-regulated by Ost at 2.5 μg/mL concentration. Cytochrome P450 side-chain cleavage (P450scc) and 3β-hydroxysteroid dehydrogenase (3β-HSD) was significantly up-regulated by Ost. However, no significant differences were observed for the expression of proliferating cell nuclear antigen (PCNA). The protein expression of StAR, P450scc and 3β-HSD were significantly up-regulated by Ost treatment. The concentration of cyclic adenosine monophosphate (cAMP) and protein kinase A (PKA) in cell lysates showed no change with Ost treatment at 2.5 μg/mL by ELISA. An ROS kit showed non-significant difference in the level of reactive oxygen species (ROS). In conclusion, Ost treatment at a concentration of 2.5 μg/mL for 24 h had significantly up-regulated P4 secretion by elevating P450scc, 3β-HSD and StAR at both gene and protein level in granulosa cells obtained from hen preovulatory follicles.


1983 ◽  
Vol 244 (5) ◽  
pp. E487-E493 ◽  
Author(s):  
B. L. Marrone ◽  
F. Hertelendy

The production of progesterone (P) and estrogen (E) by enzymatically dispersed granulosa and theca cells from chicken preovulatory follicles was examined in 3-h incubations. Accumulation of the P produced by granulosa cells was significantly reduced by the addition of theca cells, whereas E production was increased. The decrease in P accumulation was shown to be due to extensive metabolism of P by theca cells. There were no synergistic effects of luteinizing hormone (LH) and any substrate tested on E production by theca cells. Maturation of granulosa cells was characterized by an increased sensitivity to LH stimulation of P production, but there was no change in pregnenolone conversion to P. Conversely, maturation of theca cells was accompanied by decreased in both sensitivity to LH and the ability to convert substrates to E. The results are discussed in terms of the contribution of each cell type in the production of steroids by chicken follicles during maturation.


1985 ◽  
Vol 110 (3) ◽  
pp. 401-407 ◽  
Author(s):  
T. Hillensjö ◽  
A. Sjögren ◽  
B. Strander ◽  
L. Nilsson ◽  
M. Wikland ◽  
...  

Abstract. Granulosa cells were obtained from human preovulatory follicles in 31 women undergoing in vitro fertilization and embryo transfer due to tubal infertility. Follicular maturation was stimulated and synchronized by treatment with Clomiphene or human menopausal gonadotrophin (hMG), or both, plus human chorionic gonadotrophin (hCG). Follicles were aspirated by ultrasound guided puncture approximately 34–36 h after the hCG injection. The granulosa cells were washed and suspended in modified medium 199 containing 10% foetal bovine serum and cultured as monolayers for 6–8 days in the absence and presence of hormones and reactants. Progesterone formation was analyzed by RIA. In general, the cells underwent morphological luteinization and secreted high amount of progesterone. Under basal conditions the secretion of progesterone was highest during the first 2 days in culture and then gradually declined. Progesterone secretion was stimulated by human LH, hCG and the adenylate cyclase stimulator forskolin, with a maximal effect between days 2–6. The β-adrenergic agonist isoproteronol in preliminary experiments potentiated the stimulatory effect of hCG but had no own stimulatory effect. No clear differences in progesterone secretion or responsiveness to in vitro stimulation relating to the various in vivo stimulation protocols were found.


2009 ◽  
Vol 202 (3) ◽  
pp. 347-353 ◽  
Author(s):  
M F Machado ◽  
V M Portela ◽  
C A Price ◽  
I B Costa ◽  
P Ripamonte ◽  
...  

Fibroblast growth factor 17 (FGF17) is a member of the FGF8 subfamily that appears to be relevant to folliculogenesis and oogenesis, as the prototype member FGF8 is an oocyte-derived protein that signals to cumulus cells. FGF8 has structural and receptor-binding similarities to FGF17, whose expression in the ovary has not been reported. In this study, we demonstrate localization of FGF17 protein to the oocyte of preantral follicles, and to the oocyte and granulosa cells of antral follicles. Real-time PCR demonstrated the presence of mRNA in oocytes and, to a lesser extent, in granulosa and theca cells. FGF17 mRNA abundance was low in granulosa and theca cells from healthy follicles and increased significantly in atretic follicles. Addition of FSH or IGF-I to granulosa cells in vitro decreased FGF17 mRNA abundance, and treatment with FGF17 inhibited estradiol and progesterone secretion from granulosa cells in relation to control cultures without these additives. We conclude that FGF17 is a potential mediator of granulosa cell differentiation.


2017 ◽  
Vol 29 (12) ◽  
pp. 2437 ◽  
Author(s):  
You-Jee Jang ◽  
Jae-Il Park ◽  
Seong-Eun Jeong ◽  
You-Mi Seo ◽  
Phuong T. M. Dam ◽  
...  

The aim of the present study was to examine the regulation of interleukin (IL)-11 expression, as well as the role of IL-11, during ovulation in gonadotropin-primed immature rats. Injection of equine chorionic gonadotropin (eCG), followed by human CG (hCG) to induce superovulation stimulated expression of the Il11 gene in theca cells within 6 h, as revealed by northern blot and in situ hybridisation analyses. Real-time reverse transcription–polymerase chain reaction analysis showed that the IL-11 receptor, α subunit gene was expressed in granulosa and theca cells and that injection of hCG had no effect on its expression. IL-11 protein expression was stimulated in theca cells by hCG. LH-stimulated increases in Il11 mRNA levels in cultured preovulatory follicles were inhibited by protein kinase A and mitogen-activated protein kinase kinase inhibitors. Toll-like receptor (TLR) 2 and TLR4 were detected in preovulatory follicles, and the TLR4 ligand lipopolysaccharide, but not the TLR2 ligand Pam3Cys, increased Il11 mRNA levels in theca cells, but not in granulosa cells. Treatment of preovulatory follicles with IL-11 stimulated progesterone production and steroidogenic acute regulatory protein (Star) gene expression. Together, these results indicate that IL-11 in theca cells is stimulated by mitogen-activated protein kinase signalling and TLR4 activation, and increases progesterone production during ovulation.


2018 ◽  
Vol 38 (21) ◽  
Author(s):  
Angel F. Corona Velazquez ◽  
William T. Jackson

ABSTRACT Autophagy is an evolutionary conserved, degradative process from single-cell eukaryotes, such as Saccharomyces cerevisiae, to higher mammals, such as humans. The regulation of autophagy has been elucidated through the combined study of yeast, Caenorhabditis elegans, mice, Drosophila melanogaster, and humans. MTOR, the major negative regulator of autophagy, and activating nutrient kinases, such as 5′-AMP-activated protein kinase (AMPK), interact with the autophagy regulatory complex: ULK1/2, RB1CC1, ATG13, and ATG101. The ULK1/2 complex induces autophagy by phosphorylating downstream autophagy complexes, such as the BECN1 PIK3 signaling complex that leads to the creation of LC3+ autophagosomes. We highlight in this review various reports of autophagy induction that are independent of these regulators. We discuss reports of MTOR-independent, AMPK-independent, ULK1/2-independent, and BECN1-PIK3C3-independent autophagy. We illustrate that autophagy induction and the components required vary by the nature of the induction signal and type of cell and do not always require canonical members of the autophagy signaling pathway. We illustrate that rather than thinking of autophagy as a linear pathway, it is better to think of autophagy induction as an interconnecting web of key regulators, many of which can induce autophagy through different requirements depending on the type and length of induction signals.


2004 ◽  
Vol 183 (1) ◽  
pp. 51-60 ◽  
Author(s):  
E C Chin ◽  
D R E Abayasekara

The corpus luteum formed after luteinization of follicular cells secretes progesterone under the control of luteinizing hormone (LH). Binding of LH to its G-protein-coupled receptor leads to the activation of the adenylate cyclase/ cyclic AMP (cAMP)/cAMP-dependent protein kinase (PKA) signalling pathway. The identification of a new class of cAMP-binding proteins termed ‘guanine nucleotide exchange factors’ (cAMP-GEFs) provides a means by which changes in cAMP could yield actions that are independent of PKA. Hence, in this study, we have explored the hypothesis that steroidogenesis in luteinizing cells is mediated in both a cAMP/PKA-dependent and cAMP-dependent, but PKA-independent, manner. Human granulosa cells were isolated from follicular aspirates of women undergoing assisted conception. Luteinizing human granulosa cells were cultured for up to 3 days in the presence of human (h)LH and the adenylate cyclase activator forskolin in the added presence or absence of increasing doses of the PKA inhibitors H89 (N-[2-(4-bromocinnamylamino)ethyl] 5-isoquinoline) and PKI (myristoylated protein kinase A inhibitor amide 14–22) or the cAMP antagonist, Rp-cAMP. Agonist-stimulated progesterone secretion was inhibited in a dose-dependent manner by the PKA inhibitors and the cAMP antagonist, with decreasing sensitivity as luteinization progressed. Pretreatment of granulosa cells for 4 h with human (h)LH reduced the effectiveness of H89 in inhibiting progester-one secretion. Under basal conditions, cAMP-GEFI expression increased progressively throughout culture, and this could be further enhanced when cells were incubated with increasing doses of LH and forskolin. Furthermore, incubation of cells in the presence of increasing concentrations of the novel cAMP-GEF-specific cAMP analogue, 8 CPT-2 ME-cAMP (8-(4-chloro-phenylthio)-2′-0-methyladenosine-3′,5′-cyclic monophosphate), increased progesterone secretion in a dose-dependent manner. The results show that increases in cAMP generated by LH and forskolin, in addition to activating PKA, also induce increases in cAMP-GEFI protein expression in luteinizing human granulosa cells. In addition, activation of cAMP-GEFI results in increased progesterone secretion. Hence, increases in cAMP lead to the activation of PKA-dependent, as well as PKA-independent but cAMP-dependent (via cAMP-GEFI), signalling mechanisms. Since cAMP-GEFs have the capacity to activate the mitogen-activated protein kinase (MAPK) and phosphatidylinositol 3-kinase (PI3-K)/protein kinase B (PKB) signalling pathways, these may provide the potential mechanisms by which cAMP-dependent but PKA-independent progesterone synthesis is regulated.


Sign in / Sign up

Export Citation Format

Share Document