High-performance variable band-pass/band-stop state-space digital filters using Gramian-preserving frequency transformation

2014 ◽  
Vol 27 ◽  
pp. 175-184 ◽  
Author(s):  
Shunsuke Koshita ◽  
Keita Miyoshi ◽  
Masahide Abe ◽  
Masayuki Kawamata
Author(s):  
Emre Cancioglu ◽  
Gokberk Cakiroglu ◽  
Alkim Gokcen ◽  
Yilmaz Sefa Altanay

This study provides design and implementation of four digital filters (low pass, high pass, band pass and band stop) for ECG (electrocardiogram) data on FPGA with MATLAB by a serial communication. The study is conducted with using ECG data which is obtained from PhysioBank Database platform. SysGen (System Generator for DSP) which is a toolbox for MATLAB is used for designing and implementing the digital filters. The aim of the study is to perform four different digital filters with various blocks on the SysGen Toolbox. The study then examines the results of four different digital filters.


2016 ◽  
Vol 29 (2) ◽  
pp. 269-283 ◽  
Author(s):  
Dejan Mirkovic ◽  
Miona Andrejevic-Stosovic ◽  
Predrag Petkovic ◽  
Vanco Litovski

A case study is reported related to the design of IIR digital filters exhibiting critical monotonic amplitude characteristic (CMAC) in the pass band. This kind of amplitude characteristic offers several advantages as compared to its non-monotonic counterparts, although it has not been studied thoroughly so far, if at all. After giving a short overview of the way of CMACs generation, arguments will be listed in favor of the IIR version of the digital filter function realization. Next, the IIR implementation of the digital filters will be considered in short. The main part of the paper will be devoted to the design sequence of this kind of filters which will be illustrated on the example of a band-pass filter obtained by a set of transformations from an all-pole low-pass analogue prototype. This will be the first time a CMAC band-pass IIR digital filter is reported.


Author(s):  
Gordana Jovanovic Dolecek ◽  
Javier Diaz Carmona

Stearns and David (1996) states that “for many diverse applications, information is now most conveniently recorded, transmitted, and stored in digital form, and as a result, digital signal processing (DSP) has become an exceptionally important modern tool.” Typical operation in DSP is digital filtering. Frequency selective digital filter is used to pass desired frequency components in a signal without distortion and to attenuate other frequency components (Smith, 2002; White, 2000). The pass-band is defined as the frequency range allowed to pass through the filter. The frequency band that lies within the filter stop-band is blocked by the filter and therefore eliminated from the output signal. The range of frequencies between the pass-band and the stop-band is called the transition band and for this region no filter specification is given. Digital filters can be characterized either in terms of the frequency response or the impulse response (Diniz, da Silva & Netto, 2002). Depending on its frequency characteristic, a digital filter is either low-pass, high-pass, band-pass, or band-stop filters. A low-pass (LP) filter passes low frequency components to the output, while eliminating high-frequency components. Conversely, the high-pass (HP) filter passes all high-frequency components and rejects all low-frequency components. The band-pass (BP) filter blocks both low- and high-frequency components while passing the intermediate range. The band-stop (BS) filter eliminates the intermediate band of frequencies while passing both low- and high-frequency components. In terms of their impulse responses digital filters are either infinite impulse response (IIR) or finite impulse response (FIR) digital filters. Each of four types of filters (LP, HP, BP, and BS) can be designed as an FIR or an IIR filter (Ifeachor & Jervis, 2001; Mitra, 2005; Oppenheim & Schafer, 1999).


SIMULATION ◽  
1966 ◽  
Vol 6 (5) ◽  
pp. 323-336 ◽  
Author(s):  
Peter D. Hansen

Operational amplifiers can greatly simplify the design of high performance signal filters because they elimi nate the need for inductors and for impedance matching. Furthermore, use of active filters can result in reduc tion of weight, size, and cost. Filters designed to satisfy sophisticated mathematical criteria can be realized without resort to "equalization" or trimming. In this issue we discuss the design of operational amplifier and analog computer circuits suitable for use as low pass filters. We also discuss the commonly used mathematically designed filters, i.e. Butterworth, Chebyshev, and Bessel. In addition, we present two new types of theoretical filters, the Paynter and the Aver aging filters. Design data necessary for realizing these theoretical filters with amplifier circuits is provided. In the next issue we shall discuss the design of band pass, band reject, high pass and all pass active filter circuits.


Sign in / Sign up

Export Citation Format

Share Document