Robust tensor-based techniques for antenna array-based GNSS receivers in scenarios with highly correlated multipath components

2020 ◽  
Vol 101 ◽  
pp. 102715 ◽  
Author(s):  
Daniel Valle de Lima ◽  
Mateus da Rosa Zanatta ◽  
João Paulo C.L. da Costa ◽  
Rafael T. de Sousa Jr. ◽  
Martin Haardt
Sensors ◽  
2019 ◽  
Vol 19 (10) ◽  
pp. 2411 ◽  
Author(s):  
Jaroslaw Magiera

This article presents a method for detecting and mitigating intermediate GNSS spoofing. In this type of attack, at its early stage, a spoofer transmits counterfeit signals which have slight time offsets compared to true signals arriving from satellites. The anti-spoofing method proposed in this article fuses antenna array processing techniques with a multipath detection algorithm. The latter is necessary to separate highly correlated true and counterfeit GNSS signals. Spoofing detection is based on comparison of steering vectors related to received spatial components. Whereas mitigation is achieved by means of adaptive beamforming which excises interferences arriving from common direction and preserves undistorted signals from GNSS satellites. Performance of proposed method is evaluated through simulations, results of which prove the usefulness of this method for protecting GNSS receivers from intermediate spoofing interference.


Electronics ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 208
Author(s):  
Oluwole John Famoriji ◽  
Thokozani Shongwe

Direction-of-arrival (DoA) estimation of electromagnetic (EM) waves impinging on a spherical antenna array in short time windows is examined in this paper. Reflected EM signals due to non-line-of-sight propagation measured with a spherical antenna array can be coherent and/or highly correlated in a snapshot. This makes spectral-based methods inefficient. Spectral methods, such as maximum likelihood (ML) methods, multiple signal classification (MUSIC), and beamforming methods, are theoretically and systematically investigated in this study. MUSIC is an approach used for frequency estimation and radio direction finding, ML is a technique used for estimating the parameters of an assumed probability distribution for given observed data, and PWD applies a Fourier transform to the capture response and produces them in the frequency domain. Although they have been previously adapted and used to estimate DoA of EM signals impinging on linear and planar antenna array configurations, this paper investigates their suitability and effectiveness for a spherical antenna array. Various computer simulations were conducted, and plots of root-mean-square error (RMSE) against the square root of the Cramér–Rao lower bound (CRLB) were generated and used to evaluate the performance of each method. Numerical experiments and results from measured data show the degree of appropriateness and efficiency of each method. For instance, the techniques exhibit identical performance to that in the wideband scenario when the frequency f = 8 GHz, f = 16 GHz, and f = 32 GHz, but f = 16 GHz performs best. This indicates that the difference between the covariance matrix of the signal is coherent and that the steering vectors of signals impinging from that angle are small. MUSIC and PWD share the same problems in the single-frequency scenario as in the wideband scenario when the delay sample d = 0. Consequently, the DoA estimation obtained with ML techniques is more suitable, less biased, and more robust against noise than beamforming and MUSIC techniques. In addition, deterministic ML (DML) and weighted subspace fitting (WSF) techniques show better DoA estimation performance than the stochastic ML (SML) technique. For a large number of snapshots, WSF is a better choice because it is more computationally efficient than DML. Finally, the results obtained indicate that WSF and ML methods perform better than MUSIC and PWD for the coherent or partially correlated signals studied.


2019 ◽  
Vol 2019 ◽  
pp. 1-10
Author(s):  
Yuchen Xie ◽  
Zhengrong Li ◽  
Feiqiang Chen ◽  
Huaming Chen ◽  
Feixue Wang

The antenna array technology, especially the spaced-time array processing (STAP), is one of the effective methods used in Global Navigation Satellite System (GNSS) receivers to refrain the power of jamming and enhance the performance of receivers in the circumstance of interference. However, biases induced to the receiver because of many reasons, including characteristic of antennas, front-end channel electronics, and space-time filtering, are extremely harmful to the high precise positioning of receivers. Although plenty of works have been done to calibrate the antenna and to mitigate these biases, achieving a good performance of antijamming, high accuracy, and low complexity at the same time still remains challenging. Different from existing works, this paper leverages the characteristic of GNSS signal’s Doppler frequency in STAP, which is proven to remain unbiased to solve the problem, even when the nonideal antennas are used and the interference circumstance changes. Since the integration of frequency is carrier phase, the unbiased Doppler frequency leads to an accurate estimation of carrier phase which can be used to calibrate the antenna array without extra apparatus or complicating algorithms. Therefore, a simple Doppler-aid strategy may be developed in the future to solve the difficulty of STAP bias mitigation.


Author(s):  
Giovanni A. Santos ◽  
Joao Paulo C. L. da Costa ◽  
Daniel V. de Lima ◽  
Mateus da R. Zanatta ◽  
Bruno J. G. Praciano ◽  
...  

2008 ◽  
Vol 7 ◽  
pp. 592-595 ◽  
Author(s):  
J.A. Kasemodel ◽  
C.-C. Chen ◽  
I.J. Gupta ◽  
J.L. Volakis

Sign in / Sign up

Export Citation Format

Share Document