Distortionless Spatial Frequency Adaptive Processing in Antenna Array GNSS Receivers

Author(s):  
Hailong Xu ◽  
Xiaowei Cui ◽  
Jianfeng Li ◽  
Mingquan Lu
2020 ◽  
Vol 101 ◽  
pp. 102715 ◽  
Author(s):  
Daniel Valle de Lima ◽  
Mateus da Rosa Zanatta ◽  
João Paulo C.L. da Costa ◽  
Rafael T. de Sousa Jr. ◽  
Martin Haardt

Author(s):  
Yuzhou Shen ◽  
Jiangtao Huangfu ◽  
Tianyi Zhou ◽  
Anjie Zhu ◽  
Dexin Ye ◽  
...  

2019 ◽  
Vol 2019 ◽  
pp. 1-10
Author(s):  
Yuchen Xie ◽  
Zhengrong Li ◽  
Feiqiang Chen ◽  
Huaming Chen ◽  
Feixue Wang

The antenna array technology, especially the spaced-time array processing (STAP), is one of the effective methods used in Global Navigation Satellite System (GNSS) receivers to refrain the power of jamming and enhance the performance of receivers in the circumstance of interference. However, biases induced to the receiver because of many reasons, including characteristic of antennas, front-end channel electronics, and space-time filtering, are extremely harmful to the high precise positioning of receivers. Although plenty of works have been done to calibrate the antenna and to mitigate these biases, achieving a good performance of antijamming, high accuracy, and low complexity at the same time still remains challenging. Different from existing works, this paper leverages the characteristic of GNSS signal’s Doppler frequency in STAP, which is proven to remain unbiased to solve the problem, even when the nonideal antennas are used and the interference circumstance changes. Since the integration of frequency is carrier phase, the unbiased Doppler frequency leads to an accurate estimation of carrier phase which can be used to calibrate the antenna array without extra apparatus or complicating algorithms. Therefore, a simple Doppler-aid strategy may be developed in the future to solve the difficulty of STAP bias mitigation.


Sensors ◽  
2019 ◽  
Vol 19 (10) ◽  
pp. 2411 ◽  
Author(s):  
Jaroslaw Magiera

This article presents a method for detecting and mitigating intermediate GNSS spoofing. In this type of attack, at its early stage, a spoofer transmits counterfeit signals which have slight time offsets compared to true signals arriving from satellites. The anti-spoofing method proposed in this article fuses antenna array processing techniques with a multipath detection algorithm. The latter is necessary to separate highly correlated true and counterfeit GNSS signals. Spoofing detection is based on comparison of steering vectors related to received spatial components. Whereas mitigation is achieved by means of adaptive beamforming which excises interferences arriving from common direction and preserves undistorted signals from GNSS satellites. Performance of proposed method is evaluated through simulations, results of which prove the usefulness of this method for protecting GNSS receivers from intermediate spoofing interference.


Sign in / Sign up

Export Citation Format

Share Document