Application of forensic photography for the detection and mapping of Egyptian blue and madder lake in Hellenistic polychrome terracottas based on their photophysical properties

2017 ◽  
Vol 136 ◽  
pp. 104-115 ◽  
Author(s):  
Ioanna Kakoulli ◽  
Roxanne Radpour ◽  
Yuan Lin ◽  
Marie Svoboda ◽  
Christian Fischer
2022 ◽  
Vol 10 (1) ◽  
Author(s):  
Roxanne Radpour ◽  
Glenn A. Gates ◽  
Ioanna Kakoulli ◽  
John K. Delaney

AbstractImaging spectroscopy (IS) is an important tool in the comprehensive technical analysis required of archaeological paintings. The complexity of pigment mixtures, diverse artistic practices and painting technologies, and the often-fragile and weathered nature of these objects render macroscale, non-invasive chemical mapping an essential component of the analytical protocol. Furthermore, the use of pigments such as Egyptian blue and madder lake, featuring diagnostic photoluminescence emission, provides motivation to perform photoluminescence mapping on the macroscale. This work demonstrates and advances new applications of dual-mode imaging spectroscopy and data analysis approaches for ancient painting. Both reflectance (RIS) and luminescence (LIS) modes were utilized for the study of a Roman Egyptian funerary portrait from second century CE Egypt. The first derivative of the RIS image cube was analyzed and found to significantly improve materials separation, identification, and the extent of mapping. Egyptian blue and madder lake were mapped across a decorated surface using their luminescence spectral signatures in the region of 540–1000 nm as endmembers in LIS analyses. Linear unmixing of the LIS endmembers and subsequent derivative analyses resulted in an improved separation and mapping of the luminescence pigments. RIS and LIS studies, combined with complementary, single-spot collection elemental and molecular spectroscopy, were able to successfully characterize the portrait’s painting materials and binding media used by the ancient artist, providing key insight into their material use, stylistic practices, and technological choices.


2021 ◽  
Author(s):  
Gabriele Selvaggio ◽  
Milan Weitzel ◽  
Nazar Oleksiievets ◽  
Tabea Anne Oswald ◽  
Robert Nißler ◽  
...  

The layered silicates Egyptian Blue (CaCuSi4O10, EB), Han Blue (BaCuSi4O10, HB) and Han Purple (BaCuSi2O6, HP) emit as bulk material bright and stable fluorescence in the near-infrared (NIR), which is...


Author(s):  
Vitaliy Elyotnov ◽  

The article examines the key provisions of traditional and developing branches of forensic technology as a branch of the forensic science. The article analyzes modern publications of domestic and foreign scientists dedicated to the problems of forensic technology. Discussion issues and gaps existing in the theory and practice of such branches of forensic technology as forensic photography and video recording, forensic phonoscopy, forensic traceology, forensic weapons science, forensic documentation, forensic research of substances, materials and products, forensic registration, etc. The opinions of individual forensic scientists on the resolution of controversial issues of forensic technology are given. The scientific directions that have not received at present recognition of independent branches of forensic technology are indicated. The promising areas of research in the framework of the branches of forensic technology are named, the main trends of its further development are formulated.


2020 ◽  
Author(s):  
Masaki Saigo ◽  
Kiyoshi Miyata ◽  
Hajime Nakanotani ◽  
Chihaya Adachi ◽  
Ken Onda

We have investigated the solvent-dependence of structural changes along with intersystem crossing of a thermally activated delayed fluorescence (TADF) molecule, 3,4,5-tri(9H-carbazole-9-yl)benzonitrile (o-3CzBN), in toluene, tetrahydrofuran, and acetonitrile solutions using time-resolved infrared (TR-IR) spectroscopy and DFT calculations. We found that the geometries of the S1 and T1 states are very similar in all solvents though the photophysical properties mostly depend on the solvent. In addition, the time-dependent DFT calculations based on these geometries suggested that the thermally activated delayed fluorescence process of o-3CzBN is governed more by the higher-lying excited states than by the structural changes in the excited states.<br>


2020 ◽  
Author(s):  
Zeyu Liu ◽  
Shugui Hua ◽  
Tian Lu ◽  
Ziqi Tian

Inspired by a previous experimental study on the first-order hyperpolarizabilities of 1,3-thiazolium-5-thiolates mesoionic compounds using Hyper-Rayleigh scattering technique, we theoretically investigated the UV-Vis absorption spectra and every order polarizabilities of these mesoionic molecules. Based on the fact that the photophysical and nonlinear properties observed in the experiment can be perfectly replicated, our theoretical calculations explored the essential characteristics of the optical properties of the mesoionic compounds with different electron-donating groups at the level of electronic structures through various wave function analysis methods. The influence of the electron-donating ability of the donor on the optical properties of the molecules and the contribution of the mesoionic ring moiety to their optical nonlinearity are clarified, which have not been reported by any research so far. This work will help people understand the nature of optical properties of mesoionic-based molecules and provide guidance for the rational design of molecules with excellent photoelectric performance in the future.


Author(s):  
Aron Huckaba ◽  
sadig aghazada ◽  
iwan zimmermann ◽  
giulia grancini ◽  
natalia gasilova ◽  
...  

The straightforward synthesis and photophysical properties of a new series of heteroleptic Iridium (III) bis(2-arylimidazole) picolinate complexes is reported. Each complex has been characterized by NMR, UV-Vis, cyclic voltammetry, and the emissive properties of each is described. By systematically modifying first the cyclometallating aryl group on the arylimidazole ligand and then the picolinate ligand, the ramifications of ligand modification in these complexes was better understood through the construction of a structure-property relationship.


2017 ◽  
Author(s):  
Aron Huckaba ◽  
sadig aghazada ◽  
iwan zimmermann ◽  
giulia grancini ◽  
natalia gasilova ◽  
...  

The straightforward synthesis and photophysical properties of a new series of heteroleptic Iridium (III) bis(2-arylimidazole) picolinate complexes is reported. Each complex has been characterized by NMR, UV-Vis, cyclic voltammetry, and the emissive properties of each is described. By systematically modifying first the cyclometallating aryl group on the arylimidazole ligand and then the picolinate ligand, the ramifications of ligand modification in these complexes was better understood through the construction of a structure-property relationship.


2020 ◽  
Author(s):  
Matteo Tiecco ◽  
Irene Di Guida ◽  
Pier Luigi Gentili ◽  
Raimondo Germani ◽  
Carmela Bonaccorso ◽  
...  

<div><div><div><p>The structural features of a series of diverse Deep Eutectic Solvents (DESs) have been investigated and characterized by means of two fluorescent probes. The spectral and photophysical properties of the latter are strictly dependent on the experienced environment, so that they can provide insights into the polarity, viscosity, hydrogen-bond network, and micro-heterogeneity of the various DESs.</p><p>In fact, the investigated DESs exhibit a variety of properties with regards to their hydrophilicity, acidity, and hydrogen-bond ability, and these details were deeply probed by the two fluorescent molecules. The effect of the addition of water, which is a key strategy for tuning the properties of these structured systems, was also tested. In particular, the excited state dynamics of the probes, measured by femtosecond-resolved transient absorption, proved instrumental in understanding the changes in the structural properties of the DESs, namely reduced viscosity and enhanced heterogeneity, as the water percentage increases. Differences between the various DESs in terms of both local microheterogeneity and bulk viscosity also emerged from the peculiar multi-exponential solvation dynamics undergone by the excited states of the probes.</p></div></div></div>


Sign in / Sign up

Export Citation Format

Share Document