Synthesis and characterisation of new acridine dye molecules combined UV absorber and exploring photophysical properties

2021 ◽  
Vol 192 ◽  
pp. 109391
Author(s):  
Kaliyan Prabakaran ◽  
Ramalingam Manivannan ◽  
Hyeon Oh ◽  
Chokkalingam Parthiban ◽  
Young-A Son
Author(s):  
Anna S. Bondarenko ◽  
Ilias Patmanidis ◽  
Riccardo Alessandri ◽  
Paulo C. T. Souza ◽  
Thomas L.C. Jansen ◽  
...  

<div> <div> <div> <p>Supramolecular aggregates of synthetic dye molecules offer great perspectives to prepare biomimetic functional materials for light-harvesting and energy transport. The design is complicated by the fact that structure-property relationships are hard to establish, because the molecular packing results from a delicate balance of interactions and the excitonic properties that dictate the optics and excited state dynamics, in turn sensitively depend on this packing. Here we show how an iterative multiscale approach combining molecular dynamics and quantum mechanical exciton modeling can be used to obtain accurate insight into the packing of thousands of cyanine dye molecules in a complex double-walled tubular aggregate in close interaction with its solvent environment. Our approach allows us not only to answer open questions on the structure of these prototypical aggregates, but also about their molecular-scale structural and energetic heterogeneity, and the microscopic origin of their photophysical properties. This opens the route to accurate predictions of energy transport and other functional properties.<br></p> </div> </div> </div>


Author(s):  
Anthea C. Lees ◽  
Bénédicte Evrard ◽  
Tia E. Keyes ◽  
Johannes G. Vos ◽  
Cornelis J. Kleverlaan ◽  
...  

2020 ◽  
Author(s):  
Anna S. Bondarenko ◽  
Ilias Patmanidis ◽  
Riccardo Alessandri ◽  
Paulo C. T. Souza ◽  
Thomas L.C. Jansen ◽  
...  

<div> <div> <div> <p>Supramolecular aggregates of synthetic dye molecules offer great perspectives to prepare biomimetic functional materials for light-harvesting and energy transport. The design is complicated by the fact that structure-property relationships are hard to establish, because the molecular packing results from a delicate balance of interactions and the excitonic properties that dictate the optics and excited state dynamics, in turn sensitively depend on this packing. Here we show how an iterative multiscale approach combining molecular dynamics and quantum mechanical exciton modeling can be used to obtain accurate insight into the packing of thousands of cyanine dye molecules in a complex double-walled tubular aggregate in close interaction with its solvent environment. Our approach allows us not only to answer open questions on the structure of these prototypical aggregates, but also about their molecular-scale structural and energetic heterogeneity, and the microscopic origin of their photophysical properties. This opens the route to accurate predictions of energy transport and other functional properties.<br></p> </div> </div> </div>


Author(s):  
W. J. Larsen ◽  
R. Azarnia ◽  
W. R. Loewenstein

Although the physiological significance of the gap junction remains unspecified, these membrane specializations are now recognized as common to almost all normal cells (excluding adult striated muscle and some nerve cells) and are found in organisms ranging from the coelenterates to man. Since it appears likely that these structures mediate the cell-to-cell movement of ions and small dye molecules in some electrical tissues, we undertook this study with the objective of determining whether gap junctions in inexcitable tissues also mediate cell-to-cell coupling.To test this hypothesis, a coupling, human Lesh-Nyhan (LN) cell was fused with a non-coupling, mouse cl-1D cell, and the hybrids, revertants, and parental cells were analysed for coupling with respect both to ions and fluorescein and for membrane junctions with the freeze fracture technique.


2000 ◽  
Vol 660 ◽  
Author(s):  
Amarjeet Kaur ◽  
Mario J. Cazeca ◽  
Kethinni G. Chittibabu ◽  
Jayant Kumar ◽  
Sukant K. Tripathy

ABSTRACTOrganic electroluminescent (EL) diodes based on fluorescent dyes and conducting polymers have attracted the interest of researchers, mainly because of their emission in the visible region and for application to large area portable flat panel display devices, driven at low voltages. Therefore, for the development of higher efficiency polymer EL diodes, the optimal combination of the merits of organic fluorescent dye molecules with that of conjugated polymer is an important approach. We report electroluminescence studies of polymer light emitting diodes (p-LEDs) fabricated with poly[2-(3-thienyl)ethanol n-butoxy carbonylmethyl urethane] (PURET) and its composite with 4-dicyanomethylene-2-methyl-6-(p-dimethylaminostyryl)-4H pyran (DCM) dye. These materials have been chosen in view of the fact that PURET exhibits a small overlap between emission and absorption spectra whereas DCM has a good efficiency of trapping both electrons as well as holes. Polyaniline has been utilized as hole injecting layer whereas tris-8-hydroxyquinoline-aluminum as electron injecting layer. Enhanced electroluminescence with bright yellow color has been observed in p-LEDs by the addition of dye.


2020 ◽  
Author(s):  
Masaki Saigo ◽  
Kiyoshi Miyata ◽  
Hajime Nakanotani ◽  
Chihaya Adachi ◽  
Ken Onda

We have investigated the solvent-dependence of structural changes along with intersystem crossing of a thermally activated delayed fluorescence (TADF) molecule, 3,4,5-tri(9H-carbazole-9-yl)benzonitrile (o-3CzBN), in toluene, tetrahydrofuran, and acetonitrile solutions using time-resolved infrared (TR-IR) spectroscopy and DFT calculations. We found that the geometries of the S1 and T1 states are very similar in all solvents though the photophysical properties mostly depend on the solvent. In addition, the time-dependent DFT calculations based on these geometries suggested that the thermally activated delayed fluorescence process of o-3CzBN is governed more by the higher-lying excited states than by the structural changes in the excited states.<br>


2020 ◽  
Author(s):  
Zeyu Liu ◽  
Shugui Hua ◽  
Tian Lu ◽  
Ziqi Tian

Inspired by a previous experimental study on the first-order hyperpolarizabilities of 1,3-thiazolium-5-thiolates mesoionic compounds using Hyper-Rayleigh scattering technique, we theoretically investigated the UV-Vis absorption spectra and every order polarizabilities of these mesoionic molecules. Based on the fact that the photophysical and nonlinear properties observed in the experiment can be perfectly replicated, our theoretical calculations explored the essential characteristics of the optical properties of the mesoionic compounds with different electron-donating groups at the level of electronic structures through various wave function analysis methods. The influence of the electron-donating ability of the donor on the optical properties of the molecules and the contribution of the mesoionic ring moiety to their optical nonlinearity are clarified, which have not been reported by any research so far. This work will help people understand the nature of optical properties of mesoionic-based molecules and provide guidance for the rational design of molecules with excellent photoelectric performance in the future.


Author(s):  
Aron Huckaba ◽  
sadig aghazada ◽  
iwan zimmermann ◽  
giulia grancini ◽  
natalia gasilova ◽  
...  

The straightforward synthesis and photophysical properties of a new series of heteroleptic Iridium (III) bis(2-arylimidazole) picolinate complexes is reported. Each complex has been characterized by NMR, UV-Vis, cyclic voltammetry, and the emissive properties of each is described. By systematically modifying first the cyclometallating aryl group on the arylimidazole ligand and then the picolinate ligand, the ramifications of ligand modification in these complexes was better understood through the construction of a structure-property relationship.


Sign in / Sign up

Export Citation Format

Share Document