Enhanced Electroluminescence of Urethane Containing Processable Polythiophene Derivative by Addition of Dye Molecules

2000 ◽  
Vol 660 ◽  
Author(s):  
Amarjeet Kaur ◽  
Mario J. Cazeca ◽  
Kethinni G. Chittibabu ◽  
Jayant Kumar ◽  
Sukant K. Tripathy

ABSTRACTOrganic electroluminescent (EL) diodes based on fluorescent dyes and conducting polymers have attracted the interest of researchers, mainly because of their emission in the visible region and for application to large area portable flat panel display devices, driven at low voltages. Therefore, for the development of higher efficiency polymer EL diodes, the optimal combination of the merits of organic fluorescent dye molecules with that of conjugated polymer is an important approach. We report electroluminescence studies of polymer light emitting diodes (p-LEDs) fabricated with poly[2-(3-thienyl)ethanol n-butoxy carbonylmethyl urethane] (PURET) and its composite with 4-dicyanomethylene-2-methyl-6-(p-dimethylaminostyryl)-4H pyran (DCM) dye. These materials have been chosen in view of the fact that PURET exhibits a small overlap between emission and absorption spectra whereas DCM has a good efficiency of trapping both electrons as well as holes. Polyaniline has been utilized as hole injecting layer whereas tris-8-hydroxyquinoline-aluminum as electron injecting layer. Enhanced electroluminescence with bright yellow color has been observed in p-LEDs by the addition of dye.

Synlett ◽  
2017 ◽  
Vol 28 (15) ◽  
pp. 1934-1938 ◽  
Author(s):  
Zheng Liu ◽  
Jun Guo ◽  
Jian Wang ◽  
Ru-Yan Zhang ◽  
Ya-Cong Wang ◽  
...  

Along with N-hydroxysuccinimidyl, p-nitrophenyl, and phenylseleno esters, tetra- and penta-fluorophenyl esters were comparatively evaluated in term of their reactivity and hydrolytic stability. Their homobifunctional cross-linkers were prepared to conjugate proteins with small molecules, including carbohydrates, fluorescent dyes, and poly(ethylene glycol) monomethyl ether. The conjugations proceeded under mild conditions, affording the corresponding protein conjugates with good efficiency.


2012 ◽  
Vol 463-464 ◽  
pp. 112-118
Author(s):  
Feng Tao ◽  
Geng Zhu ◽  
Zhi Jun Wang ◽  
Feng Pan ◽  
Yu Feng Sun ◽  
...  

Abstract. Recently, there has been increasting interest in the doping of nano-/microcrystal hosts with Sm3+. However, very few examples of Sm3+doped YF3-based nanophosphors have been reported. In this paper, a variety of uniform YF3:Sm nano-/microcrystals have been successfully prepared by a facile, effective, and environmentally friendly hydrothermal method. The morphology evolution process has been investigated by quenching the reaction at different time. Based on the results, a possible growth mechanism is presented in detail. The as-obtained YF3:Sm nano-/microcrystals show strong yellow and red light emissions under room temperature, which is quite different from those reported previously and might find potential applications in fields such as light phosphor powers and advanced flat panel display devices.


1996 ◽  
Vol 51 (7) ◽  
pp. 843-850 ◽  
Author(s):  
Ewa Mykowska ◽  
Danuta Bauman

Abstract The spectral and electrooptical properties of some dichroic fluorescent dyes (derivatives of 3.4,9,10-perylenetetracorboxylic acid and of 3,4,9-perylenetricarboxylic acid) in isotropic solvents and nematic liquid crystals have been studied. The order parameter of the dyes in the anisotropic matrices has been determined by means of optical spectroscopy methods. Moreover, the influence of the dye addition on the nematic-isotropic phase transition temperature of the pure host has been investigated. It was found that some of the dyes studied can be utilized in guest-host liquid crystal display devices.


2021 ◽  
Author(s):  
Ghfoor Muhammad ◽  
Imran Murtaza ◽  
Rehan Abid ◽  
Naeem Ahmad

Abstract Herein, we explore the photoluminescence properties of zinc silicate (Zn2SiO4) nanostructures synthesized by vapor-liquid-solid (VLS) mode of growth using three different catalysts (Sn, Ag and Mn). Different catalysts significantly influence the growth rate which in turn has an impact on the structure and hence the photoluminescence of the prepared zinc silicate nanostructures. Zn2SiO4 has a wide bandgap of about 5.5 eV and in its pure form, it does not emit in visible region due to its inner shell electronic transitions between the 3d5 energy levels. However, the incorporation of different catalysts (Sn, Ag and Mn) at different growth temperatures into the Zn2SiO4 crystal growth kinetics provides wide visible spectral range of photoluminescence (PL) emissions. PL analysis shows broad multi-band spectrum in the visible region and distinct colours (red, yellow, green, blue, cyan and violet) are obtained depending on the crystalline structure of the prepared nanostructures. The allowed transitions due to the effect of different catalysts on zinc silicate lattice offer a huge cross-section of absorption that generates strong photoluminescence. The correlation between the structural and optical properties of the synthesized nanostructures is discussed in detail. The synthesized photoluminescent nanostructures have potential applications in solid-state lighting and display devices.


2002 ◽  
Vol 715 ◽  
Author(s):  
Atsushi Masuda ◽  
Akira Izumi ◽  
Hironobu Umemoto ◽  
Hideki Matsumura

AbstractRapid progresses are achieved in catalytic CVD (Cat-CVD), often called hot-wire CVD, in the past 3-years NEDO national project in Japan. Cat-CVD technology presents many advantages in thin-film formation processes; high-efficiency of gas use, large-area deposition, no ion bombardment and low-temperature deposition even below 200°C. All of the elemental techniques for the industrially applicable Cat-CVD apparatuses, such as the suppression of the metal contamination, the precise control of the substrate temperature, the life extension of the catalyzer, 1-m size uniform deposition and the chamber cleaning, have been completely developed. Sophisticatedly designed substrate holder with electrostatic chuck and showerhead equipped with catalyzers are both key technologies for these achievements. High reproducibility for film properties is also obtained by controlling the reaction between high-density radicals and chamber walls. Prototype mass-production apparatus for SiNx passivation films in GaAs devices has been already developed and this will be probably the first application of Cat-CVD in industry. These recent movements appear to promise the drastic revolution in semiconductor and flat-panel display industries by introducing Cat-CVD in very near future.


Nanomaterials ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 905
Author(s):  
Saquib Ahmed M. A. Peerzade ◽  
Nadezda Makarova ◽  
Igor Sokolov

Fluorescent tagging is a popular method in biomedical research. Using multiple taggants of different but resolvable fluorescent spectra simultaneously (multiplexing), it is possible to obtain more comprehensive and faster information about various biochemical reactions and diseases, for example, in the method of flow cytometry. Here we report on a first demonstration of the synthesis of ultrabright fluorescent silica nanoporous nanoparticles (Star-dots), which have a large number of complex fluorescence spectra suitable for multiplexed applications. The spectra are obtained via simple physical mixing of different commercially available fluorescent dyes in a synthesizing bath. The resulting particles contain dye molecules encapsulated inside of cylindrical nanochannels of the silica matrix. The distance between the dye molecules is sufficiently small to attain Forster resonance energy transfer (FRET) coupling within a portion of the encapsulated dye molecules. As a result, one can have particles of multiple spectra that can be excited with just one wavelength. We show this for the mixing of five, three, and two dyes. Furthermore, the dyes can be mixed inside of particles in different proportions. This brings another dimension in the complexity of the obtained spectra and makes the number of different resolvable spectra practically unlimited. We demonstrate that the spectra obtained by different mixing of just two dyes inside of each particle can be easily distinguished by using a linear decomposition method. As a practical example, the errors of demultiplexing are measured when sets of a hundred particles are used for tagging.


2019 ◽  
Vol 7 (10) ◽  
pp. 2978-2986 ◽  
Author(s):  
Hua Li ◽  
Jianfeng Wang ◽  
Shali Li ◽  
Jacques Robichaud ◽  
Dan Wang ◽  
...  

Crack-free large-area single-layer SiO2 inverse opal (IO) films similar to an inverse “moth's eye” structure, are fabricated. The effects of their porous structure on transmittance in the visible region are investigated.


1998 ◽  
Vol 509 ◽  
Author(s):  
F. G. Tarntair ◽  
C. C. Wang ◽  
W. K. Hong ◽  
H. K. Huang ◽  
H. C. Cheng

AbstractA triode structure of chimney-shaped field emitter arrays is proposed in this article. This triode structure includes the chimney-shaped emitter, thermal oxidation dioxide, and the plateau-shaped singlecrystalline silicon gate electrode. For the application of the matrix-addressable and large area flat panel display, the uniform structure of the emitters and the yield become critical manufacturing issues when attempting to control nano-meter size features. The uniformity and yield of the chimney-shaped emitters are very well controlled. The nano-sized gate-to-emitter separations can be created by the changing thickness of the insulator. The uniformity of the insulator and emitter material can be controlled within 3% which can be obtained by most large area thin film deposition tools, not by photolithography.


1981 ◽  
Vol 5 ◽  
Author(s):  
Dirk J. Bartelink

ABSTRACTPoly-crystalline silicon can be regarded as a true electronic material if good p-n junctions can be made in it or if its state of depletion can be altered by reasonable gate voltages. The degree of perfection with which it must exhibit these electronic-material properties depends on whether the application is as a technology in VLSI (or other bulk-Si substrate use) where devices with bulk-crystalline properties are available or as the principal active material in Large Area Integration (LAI), such as flat-panel display addressing circuits, where the competition is much less demanding. The three main detrimental effects of grain boundaries on electronic-device function are the action of grain boundary traps as (1) extra charge centers, (2) lifetime killers, and (3) mobility-reducing scattering centers. The current trend in reducing or almost eliminating grain boundaries by laser recrystallization or lateral epitaxy has the effect of reducing the average number of traps. In terms of potential applications of the material, the improvement derived from these procedures must be balanced against other contraints placed on the overall structure. For example, the thickness and quality of the lower oxide (and interface) in these processes will determine whether an electronically active lower gate function is practical. Some currently envisioned applications include load devices in inverters either as resistors or as depletion transistors, common-gate staked CMOS structures, dual-channel MOSFET's, and other “vertical VLSI” applications. The systems-level topological advantages of stacked structures and the circuit-performance improvement provided by the ground plane in dielectrically isolated devices must also be balanced against the extra cost and yield loss of additional masking level complexity and design complication.


Sign in / Sign up

Export Citation Format

Share Document