A selective Nile Red based solvatochromic probe: A study of fluorescence in LUVs and GUVs model membranes

2021 ◽  
pp. 109759
Author(s):  
Lucia Sessa ◽  
Simona Concilio ◽  
Miriam Di Martino ◽  
Anna Maria Nardiello ◽  
Ylenia Miele ◽  
...  
Keyword(s):  
Nile Red ◽  
Author(s):  
Anne M. Klinkner ◽  
Crystal R. Waites ◽  
Peter J. Bugelski ◽  
William D. Kerns

A primary effort in the understanding of the progression of atherosclerotic disease has been methods development for visualization of the atherosclerotic plaque. We introduce a new method for the qualitative analysis of lipids in atherosclerotic fatty streaks which also retains those lipids for biochemical evaluation. An original aspect of the process is the ability to view an entire fatty streak en face, selectively stained for specific lipid classes within the lesion.New Zealand white rabbits were fed a high cholesterol diet(0.15%-0.3% for 14 wks). The aorta was removed and fixed in Carson's phosphate buffered formaldehyde followed by dual staining in the fluorescent dyes Nile red and filipin. Stock solutions of nile red(0.5mg/ml acetone) and filipin(2.5mg/ml dimethyl formamide) were prepared and kept at -20°C; all subsequent steps were at RT. 0.5cm × 1.0cm pieces of aorta were trimmed and adventitia removed. The pieces were then washed 3×15 min in PBS w/o CaMg, soaked in Nile red(NR)/filipin(Fl) stain(100(il NR stock + 200μl Fl stock in 10 ml PBS for 30 min, washed in PBS 3×30 min, rinsed with distilled water, mounted(Crystal Mount, Biomedia) and coverslipped and viewed by fluorescence microscopy.


1907 ◽  
Vol 64 (1644supp) ◽  
pp. 8-9
Author(s):  
Harold J. Shepstone
Keyword(s):  
Red Sea ◽  

Membranes ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 327
Author(s):  
Michał J. Sabat ◽  
Anna M. Wiśniewska-Becker ◽  
Michał Markiewicz ◽  
Katarzyna M. Marzec ◽  
Jakub Dybas ◽  
...  

Tauroursodeoxycholic acid (TUDCA), a hydrophilic bile acid containing taurine conjugated with the ursodeoxycholic acid (UDCA), has been known and used from ancient times as a therapeutic compound in traditional Chinese medicine. TUDCA has recently been gaining significant interest as a neuroprotective agent, also exploited in the visual disorders. Among several mechanisms of TUDCA’s protective action, its antioxidant activity and stabilizing effect on mitochondrial and plasma membranes are considered. In this work we investigated antioxidant activity of TUDCA and its impact on structural properties of model membranes of different composition using electron paramagnetic resonance spectroscopy and the spin labeling technique. Localization of TUDCA molecules in a pure POPC bilayer has been studied using a molecular dynamics simulation (MD). The obtained results indicate that TUDCA is not an efficient singlet oxygen (1O2 (1Δg)) quencher, and the determined rate constant of its interaction with 1O2 (1Δg) is only 1.9 × 105 M−1s−1. However, in lipid oxidation process induced by a Fenton reaction, TUDCA reveals substantial antioxidant activity significantly decreasing the rate of oxygen consumption in the system studied. In addition, TUDCA induces slight, but noticeable changes in the polarity and fluidity of the investigated model membranes. The results of performed MD simulation correspond very well with the experimental results.


Sign in / Sign up

Export Citation Format

Share Document