Benzodifuran-based fluorescent brighteners: A novel platform for plant cell wall imaging

2021 ◽  
pp. 110071
Author(s):  
Rosita Diana ◽  
Ugo Caruso ◽  
Francesco Silvio Gentile ◽  
Luigi Di Costanzo ◽  
David Turrà ◽  
...  
2020 ◽  
Author(s):  
Huimin Xu ◽  
Yuanyuan Zhao ◽  
Yuanzhen Suo ◽  
Yayu Guo ◽  
Yi Man ◽  
...  

Abstract Background: Cell wall imaging can considerably permit direct visualization of the molecular architecture of cell walls and provide the detailed chemical information on wall polymers, which is imperative to better exploit and use the biomass polymers; however, detailed imaging and quantifying of the native composition and architecture in the cell wall remains challenging.Results: Here, we describe a label-free imaging technology, coherent Raman scattering microscopy (CRS), including coherent anti-Stokes Raman scattering (CARS) microscopy and stimulated Raman scattering (SRS) microscopy, which images the major structures and chemical composition of plant cell walls. The major steps of the procedure are demonstrated, including sample preparation, setting the mapping parameters, analysis of spectral data, and image generation. Applying this rapid approach, which will help researchers understand the highly heterogeneous structures and organization of plant cell walls.Conclusions: This method can potentially be incorporated into label-free microanalyses of plant cell wall chemical composition based on the in situ vibrations of molecules.


Plant Methods ◽  
2021 ◽  
Vol 17 (1) ◽  
Author(s):  
Huimin Xu ◽  
Yuanyuan Zhao ◽  
Yuanzhen Suo ◽  
Yayu Guo ◽  
Yi Man ◽  
...  

Abstract Background New cell wall imaging tools permit direct visualization of the molecular architecture of cell walls and provide detailed chemical information on wall polymers, which will aid efforts to use these polymers in multiple applications; however, detailed imaging and quantification of the native composition and architecture in the cell wall remains challenging. Results Here, we describe a label-free imaging technology, coherent Raman scattering (CRS) microscopy, including coherent anti-Stokes Raman scattering (CARS) microscopy and stimulated Raman scattering (SRS) microscopy, which can be used to visualize the major structures and chemical composition of plant cell walls. We outline the major steps of the procedure, including sample preparation, setting the mapping parameters, analysis of spectral data, and image generation. Applying this rapid approach will help researchers understand the highly heterogeneous structures and organization of plant cell walls. Conclusions This method can potentially be incorporated into label-free microanalyses of plant cell wall chemical composition based on the in situ vibrations of molecules.


2016 ◽  
Vol 85 (3) ◽  
pp. 437-447 ◽  
Author(s):  
Marie Dumont ◽  
Arnaud Lehner ◽  
Boris Vauzeilles ◽  
Julien Malassis ◽  
Alan Marchant ◽  
...  

Author(s):  
Venkatasubramanian Sivakumar

Background: In the growing environmental concern use of natural products, efficient processes and devices are necessary. Solid-Liquid extraction of active Ingredients from Plant materials is one of the important unit operations in Chemical Engineering and need to be enhanced. Objectives: Since, these active ingredients are firmly bound to the plant cell wall membrane, which pose mass-transfer resistance and need to get detached through the use of suitable process intensification tools such as ultrasound and suitable devices. Therefore, detailed analysis and review is essential on development made in this area through Publications and Patents. Hence, the present paper illustrates the development of ultrasound assisted device for solid-liquid extraction are presented in this paper. Methods: Advantages such as % Yield, Reduction in extraction time, use of ambient conditions, better process control, avoidance or minimizing multi stage extraction could be achieved due to the use of ultrasound in extraction as compared to conventional processes. Conclusions: Use of ultrasound to provide significant improvements in the extraction of Vegetable tannins, Natural dyes for application in Leather processing has been demonstrated and reported earlier. These enhancement could be possible through various effects of ultrasound such as better flow of solvents through micro-jet formation, mass transfer enhancement due to rupture of plant cell wall membranes through acoustic cavitation, better leaching due to micro-mixing and acoustic streaming effects. This approach would minimize material wastage; thereby, leading to eco-conservation of plant materials, which is very much essential for better environment. Hence, various methods and design for application of ultrasound assisted solid-liquid extractor device are necessary.


Sign in / Sign up

Export Citation Format

Share Document