Faculty Opinions recommendation of Mechanical effects of plant cell wall enzymes on cellulose/xyloglucan composites.

Author(s):  
Daniel Cosgrove
2004 ◽  
Vol 38 (1) ◽  
pp. 27-37 ◽  
Author(s):  
Elisabeth Chanliaud ◽  
Jacquie De Silva ◽  
Barbara Strongitharm ◽  
George Jeronimidis ◽  
Michael J. Gidley

Author(s):  
Venkatasubramanian Sivakumar

Background: In the growing environmental concern use of natural products, efficient processes and devices are necessary. Solid-Liquid extraction of active Ingredients from Plant materials is one of the important unit operations in Chemical Engineering and need to be enhanced. Objectives: Since, these active ingredients are firmly bound to the plant cell wall membrane, which pose mass-transfer resistance and need to get detached through the use of suitable process intensification tools such as ultrasound and suitable devices. Therefore, detailed analysis and review is essential on development made in this area through Publications and Patents. Hence, the present paper illustrates the development of ultrasound assisted device for solid-liquid extraction are presented in this paper. Methods: Advantages such as % Yield, Reduction in extraction time, use of ambient conditions, better process control, avoidance or minimizing multi stage extraction could be achieved due to the use of ultrasound in extraction as compared to conventional processes. Conclusions: Use of ultrasound to provide significant improvements in the extraction of Vegetable tannins, Natural dyes for application in Leather processing has been demonstrated and reported earlier. These enhancement could be possible through various effects of ultrasound such as better flow of solvents through micro-jet formation, mass transfer enhancement due to rupture of plant cell wall membranes through acoustic cavitation, better leaching due to micro-mixing and acoustic streaming effects. This approach would minimize material wastage; thereby, leading to eco-conservation of plant materials, which is very much essential for better environment. Hence, various methods and design for application of ultrasound assisted solid-liquid extractor device are necessary.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Haruka Sugiura ◽  
Ayumi Nagase ◽  
Sayoko Oiki ◽  
Bunzo Mikami ◽  
Daisuke Watanabe ◽  
...  

Abstract Saprophytic bacteria and plants compete for limited nutrient sources. Bacillus subtilis grows well on steamed soybeans Glycine max to produce the fermented food, natto. Here we focus on bacterial responses in conflict between B. subtilis and G. max. B. subtilis cells maintained high growth rates specifically on non-germinating, dead soybean seeds. On the other hand, viable soybean seeds with germinating capability attenuated the initial growth of B. subtilis. Thus, B. subtilis cells may trigger saprophytic growth in response to the physiological status of G. max. Scanning electron microscope observation indicated that B. subtilis cells on steamed soybeans undergo morphological changes to form apertures, demonstrating cell remodeling during saprophytic growth. Further, transcriptomic analysis of B. subtilis revealed upregulation of the gene cluster, yesOPQR, in colonies growing on steamed soybeans. Recombinant YesO protein, a putative, solute-binding protein for the ATP-binding cassette transporter system, exhibited an affinity for pectin-derived oligosaccharide from plant cell wall. The crystal structure of YesO, in complex with the pectin oligosaccharide, was determined at 1.58 Å resolution. This study expands our knowledge of defensive and offensive strategies in interspecies competition, which may be promising targets for crop protection and fermented food production.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Liang Sun ◽  
Jae Won Lee ◽  
Sangdo Yook ◽  
Stephan Lane ◽  
Ziqiao Sun ◽  
...  

AbstractPlant cell wall hydrolysates contain not only sugars but also substantial amounts of acetate, a fermentation inhibitor that hinders bioconversion of lignocellulose. Despite the toxic and non-consumable nature of acetate during glucose metabolism, we demonstrate that acetate can be rapidly co-consumed with xylose by engineered Saccharomyces cerevisiae. The co-consumption leads to a metabolic re-configuration that boosts the synthesis of acetyl-CoA derived bioproducts, including triacetic acid lactone (TAL) and vitamin A, in engineered strains. Notably, by co-feeding xylose and acetate, an enginered strain produces 23.91 g/L TAL with a productivity of 0.29 g/L/h in bioreactor fermentation. This strain also completely converts a hemicellulose hydrolysate of switchgrass into 3.55 g/L TAL. These findings establish a versatile strategy that not only transforms an inhibitor into a valuable substrate but also expands the capacity of acetyl-CoA supply in S. cerevisiae for efficient bioconversion of cellulosic biomass.


Sign in / Sign up

Export Citation Format

Share Document