scholarly journals Erratum to “Mechanical properties of modified hot mix asphalt containing polyethylene terephthalate fibers as binder additive and carbonized wood particles as fine aggregate replacement” [Asian Transport Stud. 6 (2020) 100029]

2022 ◽  
Vol 8 ◽  
pp. 100048
Author(s):  
Nishanthini Jegatheesan ◽  
Terrance M. Rengarasu ◽  
Wasala M.K.R.T.W. Bandara
2021 ◽  
Vol 2139 (1) ◽  
pp. 012016
Author(s):  
H Y Jaramillo ◽  
J A Gómez-Camperos ◽  
N Quintero-Quintero

Abstract This study aims to analyze the influence of the incorporation of crushed polyethylene terephthalate as a substitute for fine aggregate in percentages of 10%, 15%, and 20% for the elaboration of concrete blocks. The methodology used is experimental quantitative approach, where the influence of the addition of crushed polyethylene terephthalate as a substitute for fine aggregate for the elaboration of concrete blocks was analyzed to identify the variation in the physical and mechanical properties of samples elaborated under different substitutions and in this way compare with the Colombian standard procedures. The results found in this study indicated that the blocks with the different percentages of polyethylene terephthalate presented a good resistance compared to the block without polyethylene terephthalate, which presented a resistance of 8 MPa. The blocks with polyethylene terephthalate at 10%, 15%, and 20% presented an average resistance of 6.36 MPa, 3.58 MPa, and 4.63 MPa, respectively. Finally, it was analyzed that the blocks with 10% aggregate are waterproof with normal density. In comparison, the blocks with 15% and 20% polyethylene terephthalate have high permeability, with the ability to drain 1 liter of water in 105 s and 38 s, respectively.


Author(s):  
Zahid Iqbal Khan ◽  
Zurina Binti Mohamad ◽  
Abdul Razak Bin Rahmat ◽  
Unsia Habib ◽  
Nur Amira Sahirah Binti Abdullah

This work explores a novel blend of recycled polyethylene terephthalate/polyamide 11 (rPET/PA11). The blend of rPET/PA11 was introduced to enhance the mechanical properties of rPET at various ratios. The work’s main advantage was to utilize rPET in thermoplastic form for various applications. Three different ratios, i.e. 10, 20 and 30 wt.% of PA11 blend samples, were prepared using a twin-screw extruder and injection moulding machine. The mechanical properties were examined in terms of tensile, flexural and impact strength. The tensile strength of rPET was improved more than 50%, while the increase in tensile strain was observed 42.5% with the addition of 20 wt.% of PA11. The improved properties of the blend were also confirmed by the flexural strength of the blends. The flexural strength was increased from 27.9 MPa to 48 MPa with the addition of 30 wt.% PA11. The flexural strain of rPET was found to be 1.1%. However, with the addition of 10, 20 and 30 wt.% of PA11, the flexural strain was noticed as 1.7, 2.1, and 3.9% respectively. The impact strength of rPET/PA11 at 20 wt.% PA11 was upsurged from 110.53 to 147.12 J/m. Scanning electron microscopy analysis revealed a dispersed PA11 domain in a continuous rPET matrix morphology of the blends. This work practical implication would lead to utilization of rPET in automobile, packaging, and various industries.


Author(s):  
Kamil Krzywiński ◽  
Łukasz Sadowski ◽  
Damian Stefaniuk ◽  
Aleksei Obrosov ◽  
Sabine Weiß

AbstractNowadays, the recycled fine aggregate sourced from construction and demolition waste is not frequently used in manufacturing of epoxy resin coatings. Therefore, the main novelty of the article is to prepare green epoxy resin coatings modified with recycled fine aggregate in a replacement ratio of natural fine aggregate ranged from 20 to 100%. The microstructural properties of the aggregates and epoxy resin were analyzed using micro-computed tomography, scanning electron microscopy and nanoindentation. The macroscopic mechanical properties were examined using pull-off strength tests. The highest improvement of the mechanical properties was observed for epoxy resin coatings modified with 20% of natural fine aggregate and 80% of recycled fine aggregate. It has been found that even 100% of natural fine aggregate can be successfully replaced using the recycled fine aggregate with consequent improvement of the pull-off strength of analyzed epoxy resin coatings. In order to confirm the assumptions resulting from the conducted research, an original analytical and numerical failure model proved the superior behavior of modified coating was developed.


2019 ◽  
Vol 299 ◽  
pp. 06007
Author(s):  
Mircea Aurelian Antoniu Rusu ◽  
Sever-Adrian Radu ◽  
Catalin Moldovan ◽  
Codruta Sarosi ◽  
Ionela Amalia Mazilu (Moldovan) ◽  
...  

Although polyethylene terephthalate (PET) is a champion of recycling, intense research is being done to find new solutions for using recycled plastic. This study aims to characterize the mechanical andstructural properties (SEM- scanning electron microscopy) of products made from recycled metal swarf or mesh wire with recycled plastic (PET) in comparison with virgin plastic. Samples manufactured from virgin and recycled PET are made by pressing and high temperature. The loss of mechanical properties ofproducts made from recycled plastic is a major drawback that influences their use. SEM images confirm that the dispersion and distribution of the PET phase is not very uniform. By addition of virgin plastic in various compositions with recycled plastic, processing parameters and mechanical properties can be optimized.


Polymer ◽  
1990 ◽  
Vol 31 (3) ◽  
pp. 431-434 ◽  
Author(s):  
Stoyko Fakirov ◽  
Michail Evstatiev

Sign in / Sign up

Export Citation Format

Share Document